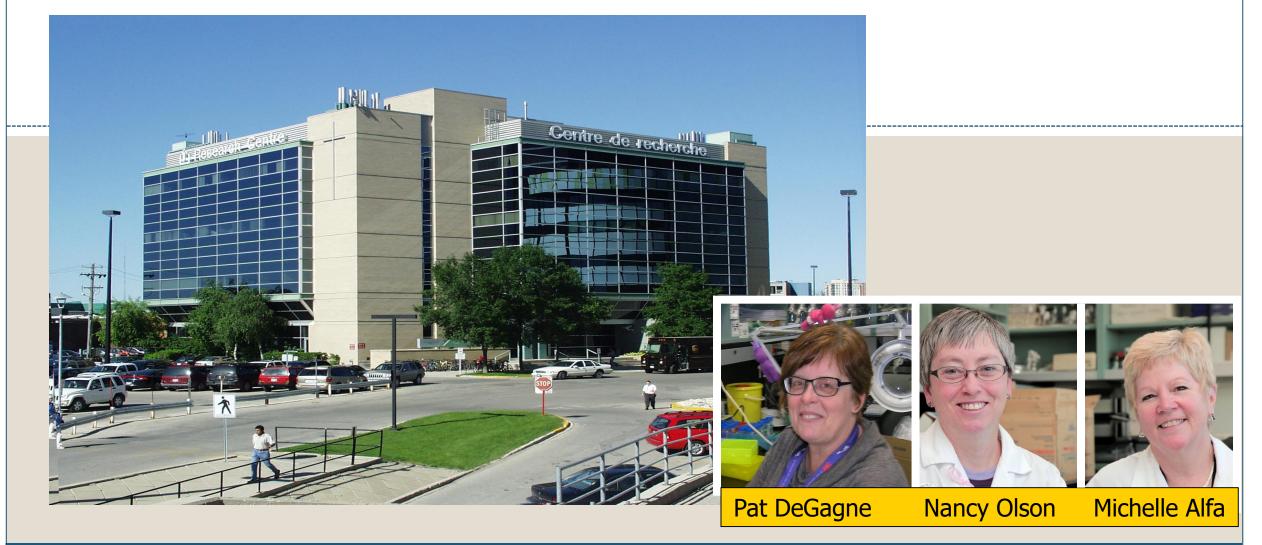

Biofilm: Instruments & Environmental Surfaces

DR. MICHELLE ALFA PROFESSOR, DEPT OF MEDICAL MICROBIOLOGY, UNIVERSITY OF MANITOBA, WINNIPEG, MB

CME Disclosure

Michelle Alfa:


- consultant and on the Advisory board for 3M, Olympus and J&J ASP.
- consulting services for Ofstead Associates, and Novaflux Inc. –
- royalties from the University of Manitoba for a patent licence to Healthmark.

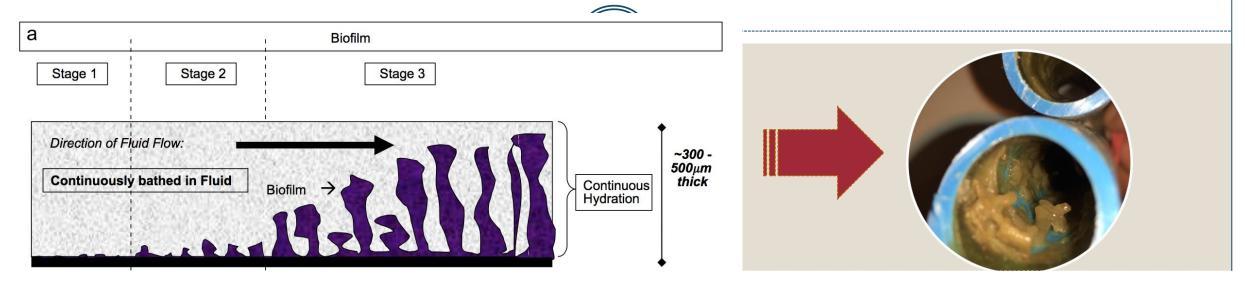
None of this funding is related to the research and information she will be presenting.

The research funding for some of the studies to be presented was provided by ASGE (American Society for Gastroenterology).

St Boniface Research Centre

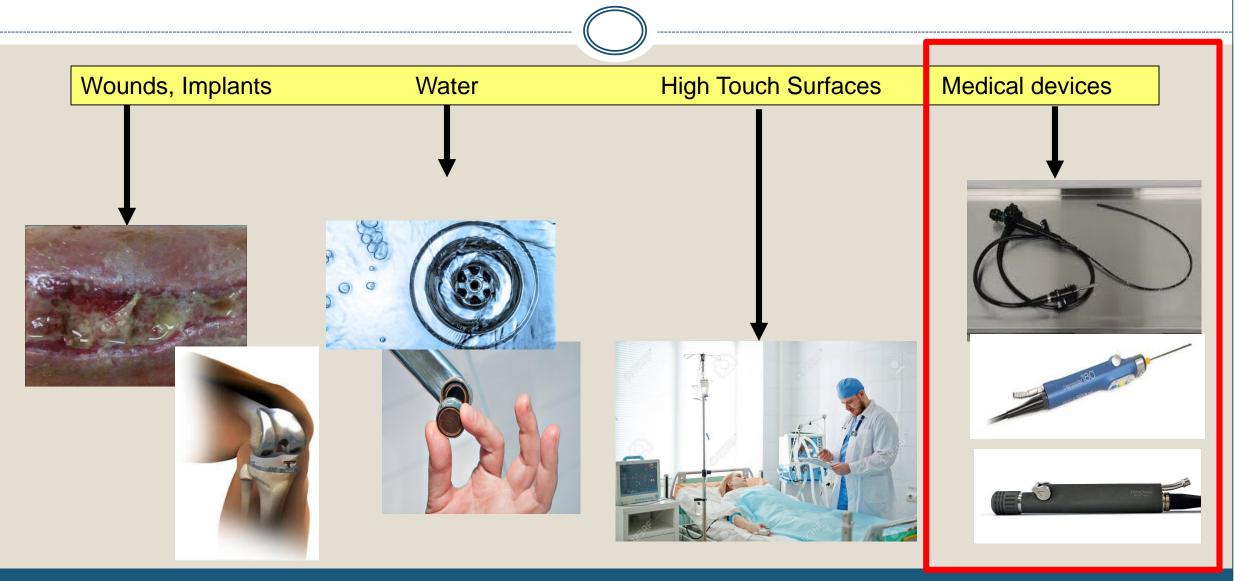
Winnipeg, Manitoba Canada

Overview

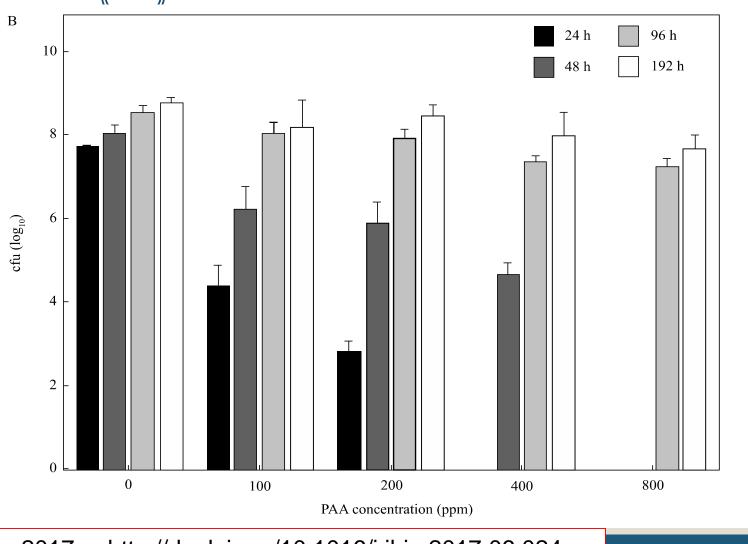

• How does Traditional biofilm differ from Build-up and Dry surface biofilm?

• Evidence: Impact of Biofilm on Instrument Reprocessing & Surface Disinfection

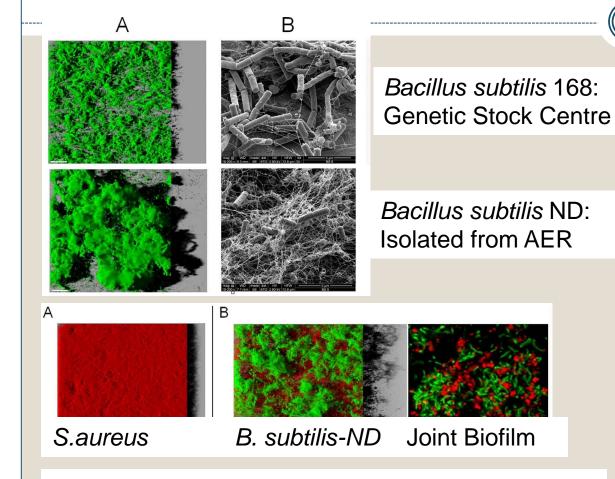
• Summary


All images in this presentation are from Google Free images unless stated otherwise

Comparison: Traditional to Non-traditional Biofilm


Zhong W, **Alfa M**, Howie R, Zelenitksy S. Simulation of cyclic reprocessing buildup on reused medical devices. Comput Biol Med 2009 Jun; 39(6): 568-577.

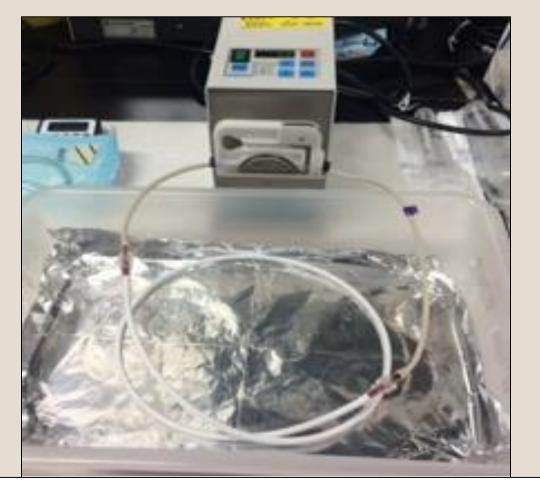
Biofilm in Healthcare


Efficacy of Peracetic acid to kill *P.aeruginosa* in biofilm

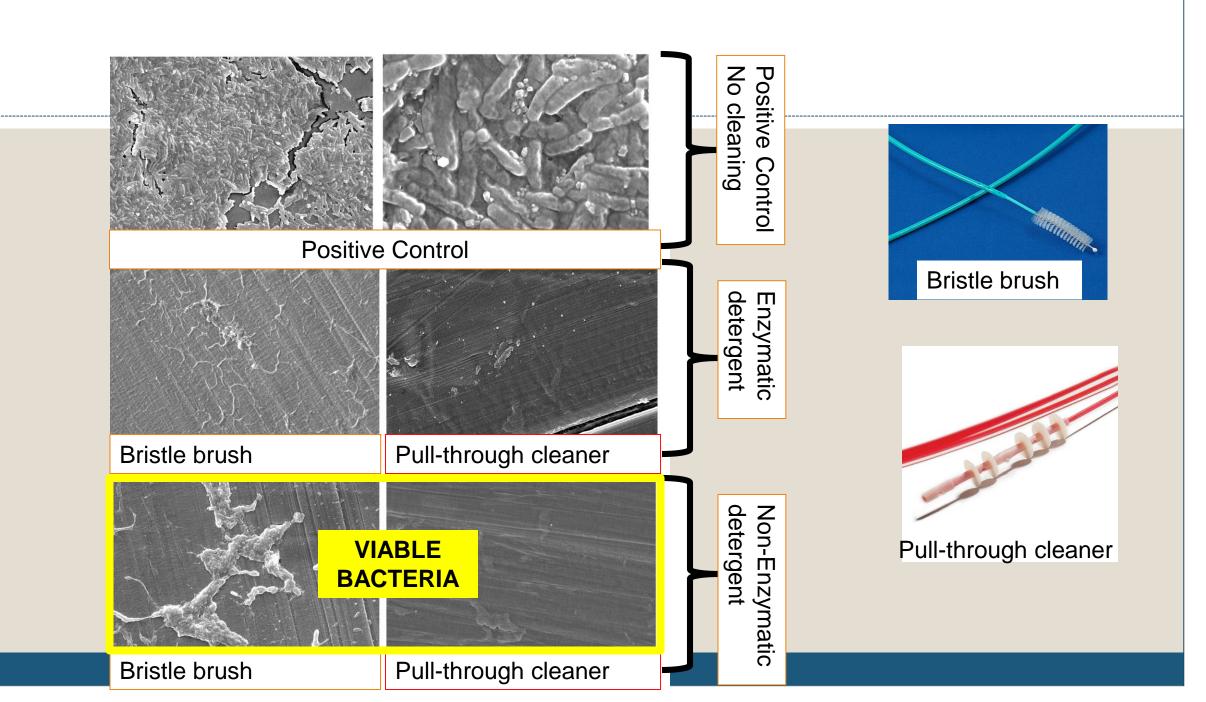
 P. aeruginosa in mature biofilm not eliminated by 800 ppm PAA after 5 mins exposure

Akinbobola A et al J Hosp Infection 2017. http://dx.doi.org/10.1016/j.jhin.2017.06.024

Protection of S. aureus by Bacillus biofilm resistant to PAA



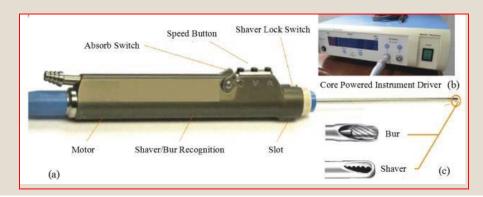
Bridier et al Biofilms of a *Bacillus subtilis* Hospital Isolate Protect Staphylococcus aureus from Biocide Action. PLoS ONE 2012 doi:10.1371/journal.pone.0044506 **Table 2.** Bactericidal activity of water and 0.35% PAA onsingle and mixed species biofilms after 5 min of treatment.


		log (CFU/well)	
	Strain	Water	PAA (0.35%)
Single species biofilm	B. subtilis 168	7.6±0.2	_
	<i>B. subtilis</i> NDmedical	7.7±0.1	3.9±0.6
	S.aureus AH478	9.3±0.1	-
Mixed species biofilm	B. subtilis 168	7.5±0.5	-
	S.aureus RN4220	8.2±0.4	-
	<i>B. subtilis</i> NDmedical	7.3±0.3	3.9±0.3
	S.aureus RN4220	8.4±0.1	2.6±0.5

Can MIFU eliminate traditional biofilm?

- Biofilm allowed to form overnight in PTFE channel
- Manufacturer's pump-assisted cleaning combined with liquid chemical sterilization (SS1E)
- Process repeated for 5 times (i.e. 5 consecutive days)
- Optimal culture method

Alfa MJ, et al Simulated-use polytetrafluorethylene biofilm model: repeated rounds of complete reprocessing lead to accumulation of organic debris and viable bacteria. ICHE 2017 http://dx.doi.org/10.1016/j.gie.2017.05.014


Traditional Biofilm take home messages:

Traditional biofilm:

- Mature biofilm not easy to disinfect
- Protection from disinfection for other bacteria integrated into biofilm
- If cleaning inadequate \rightarrow disinfection fails

• **PREVENT** Biofilm formation

"Each surgical power tool has the potential to be contaminated with proteinaceous material that aids the adsorption of bacteria to the instrument & may inhibit sterilization processes."

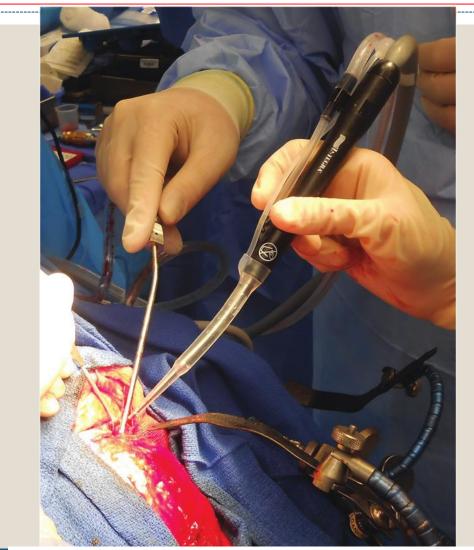
Deshpande et al 2015 Biofouling of surgical power tools during routine use. http://dx.doi.org/10.1016/j.jhin.2015.03.006

Surgical Power Tool contamination after use & after disinfection

Table I

Summary of contaminants detected in surgical power tools

Power tool	Specialties	Contaminants detected before decontamination	Contaminants detected after decontamination
Rotary	Dentistry	Coagulase-negative staphylococci, Staphylococcus aureus, Bacillus spp., Streptococcus spp.	Bacteria including S. <i>aureus</i> ²⁰ Hepatitis B DNA ⁵ Hepatitis C DNA ²¹
	Orthopaedic	Staphylococcus spp.	Protein ¹⁰ DNA ¹¹ Pseudomonas ³
Ultrasonic	Ophthalmology, neurosurgery, dentistry		Blood ⁹ Protein ⁹ Bacteria ⁴ Fungi (unidentified) ⁹ Eye lens tissue ⁹
Laser	Dermatology		Viruses ²² Cellular debris ²³ Herpes simplex virus ⁶ HIV viral DNA ²⁴ Bacteria ⁷
Robotic			Protein ^{25–28}


Deshpande et al 2015 Biofouling of surgical power tools during routine use. http://dx.doi.org/10.1016/j.jhin.2015.03.006

Summary of Clinical Infections in Surgical Instruments: disinfection/sterilization failure

Year [Ref]	Surgical Device	Disinfection/ Sterilization	Pathogen & Infection	Issue
1999 [Zaluski	Phacoemulsifier [Eye surgery]	Steam	<i>P.aeruginosa:</i> - endopthalmitis	Contamination of internal lines
2007 [Gillespie]	Needle guide for transrectal biopsy	HLD with OPA [overnight soak]*	<i>P.aeruginosa:</i> - Septicemia	Encrusted channel contamination
2011 [Tosh]	Arthroscopic handpiece	Steam	<i>P.aeruginosa:</i> - knee infections	Tissue retained inside handpiece*
2012 [Dancer]	Orthopedic & Opthalmologic surgical instruments	Steam: wet-packs & intact packs	Bacillus sp, Coag negative Staph. - SSIs	Instruments in intact packs contaminated
2017 [Pesant]	Ultrasonic surgical aspirator	Steam	P.acnes, CNS, Grp B Strep, E.faecalis - brain abscess, meningitis	Inadequate cleaning due to process change

Pesant et al AJIC 2017;45:433-5

http://dx.doi.org/10.1016/j.ajic.2016.11.020

Cavitron Ultrasonic Surgical Aspirator (CUSA) a surgical power tool for tumor resection

Change:

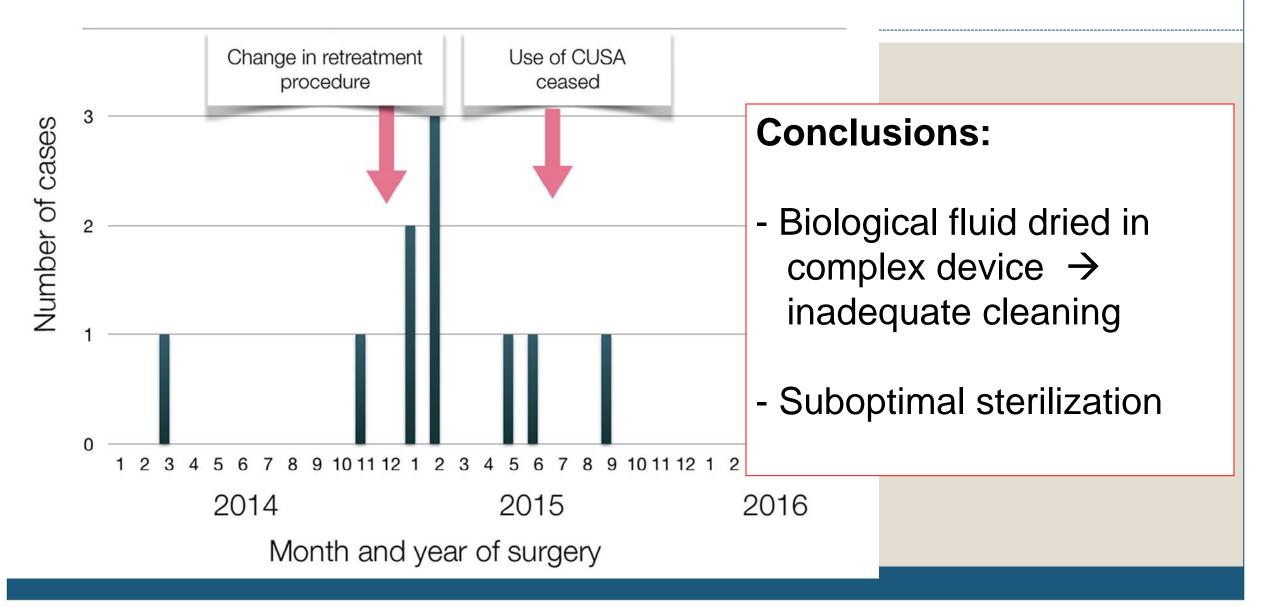
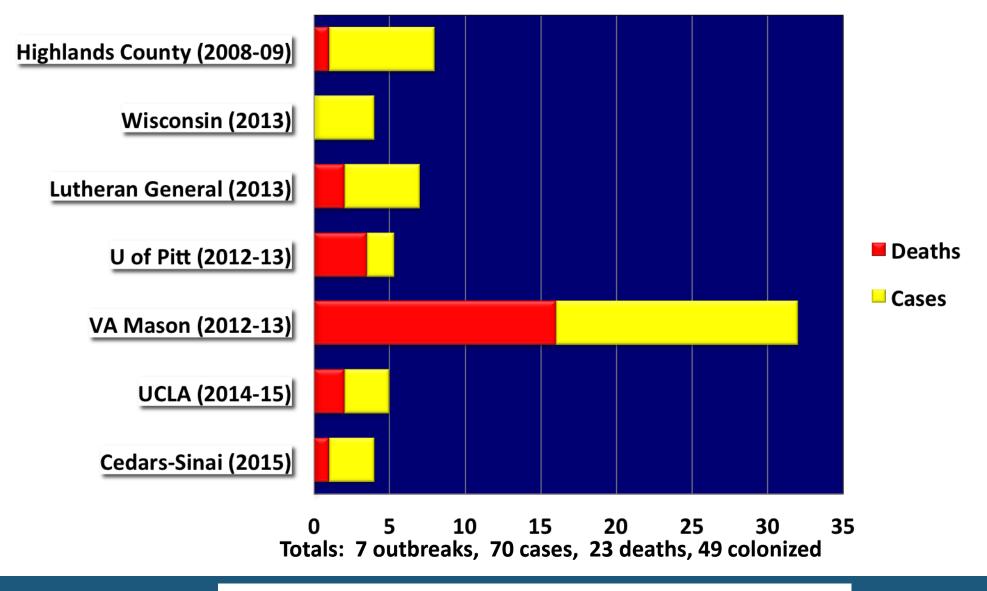

- CUSA sent from OR to CPD for cleaning,
- CUSA sent back to OR for assembly
- CUSA sent to CPD for sterilization

Image from: Wladis E et al Orbit, 2014; 33(3): 234–235

Infections post-craniotomy

Date:	Age:	Days between surgery & infection	Infection	Pathogen grown:
01/23/2015	65	107	Cerebral abscess	P. acnes
02/11/2015	74	89	Cerebral abscess, epidural empyema	None (Abx given prior to culture)
02/19/2015	42	88	Cerebral abscess	S. aureus, P. acnes
02/25/2015	22	25	Meningitis	S. capitis
05/01/2015	39	3	Meningitis	S. agalactiae
06/18/2015	69	22	Meningitis	E. faecalis
Pesant et al AJIC 2017;45:433-5 http://dx.doi.org/10.1016/j.ajic.2016.11.020				

C. Sheitoyan-Pesant et al. / American Journal of Infection Control 45 (2017) 433-5



Infection transmission due to contaminated Surgical Instruments

• Data from USA 2010:

- 1.6 million endoscope procedures/year
- 51.4 million surgical procedures/year
- Many infection transmissions related to incorrect use of HLD rather than steam sterilization
- Risk of infection from reusable surgical instruments is lower than for reusable flexible endoscopes

Duodenoscope-Related MDRO Outbreaks

Slide courtesy of Dr. David Lichtenstein, Boston University Medical Centre

Recent Publications using new FDA recommendations

Perform High Level Disinfection (HLD) two times:

- *Visrodia* et al GIE 2017

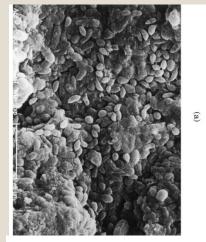
Persistent regrowth of same organism:

- K. pneumoniae, P.aeruginosa, S.maltophilia
- *Bartels* et al GIE 2018

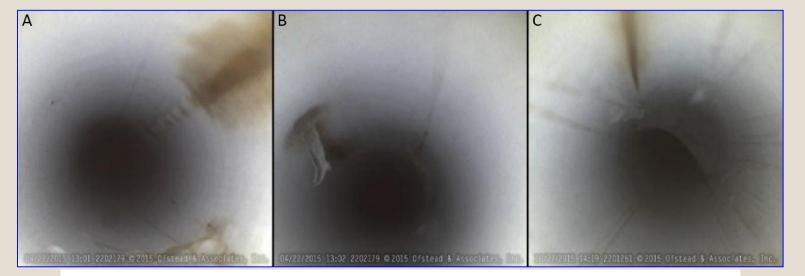
Presistent regrowth of same organism: *E.coli* No improvement HLD x 2 versus HLD once

- *Snyder* et al Gastroenterology 2017 No improvement HLD x 2 versus HLD once

Perform HLD followed by Ethylene Oxide sterilization:


- *Narzhny* et al GIE 2016: CRE in 1/84 duodenoscopes

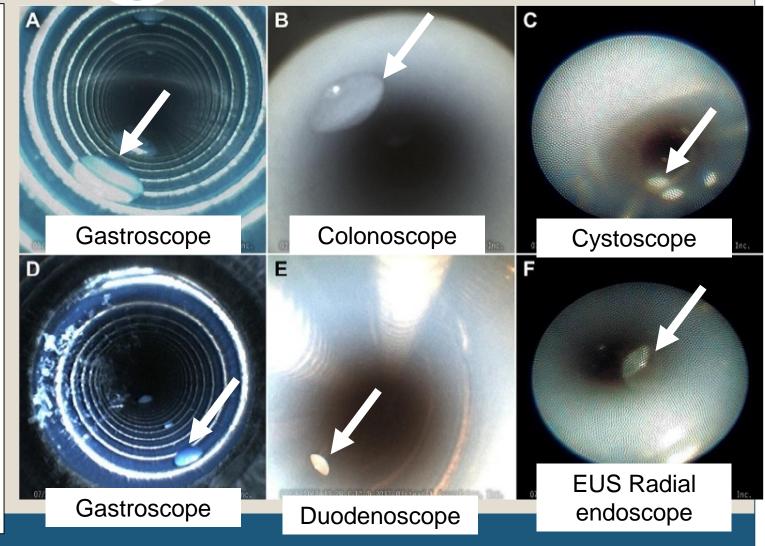
- Bartels et al GIE 2018: No improvement over HLD once



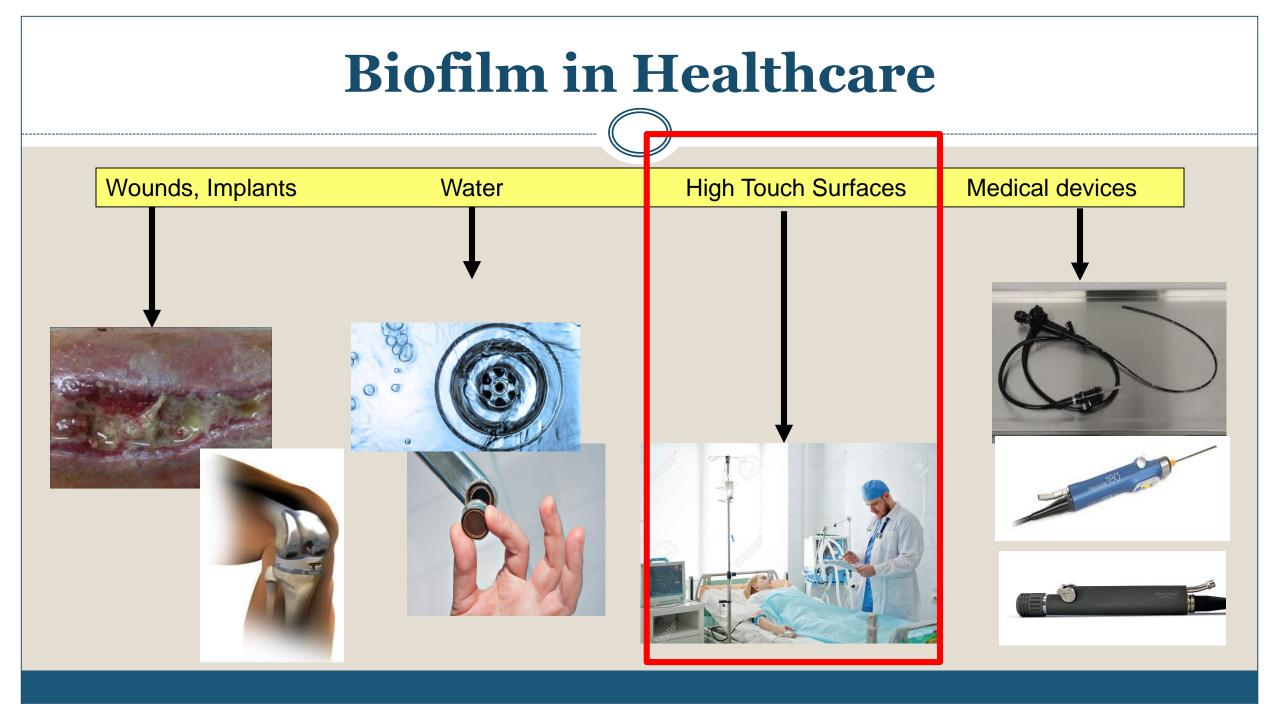
Debris in fully reprocessed patient-used Endoscope channels

Air/Water Channels: Pajkos 2004, Ren-Pei 2014

Instrument Channels: Ofstead et al AJIC 2017

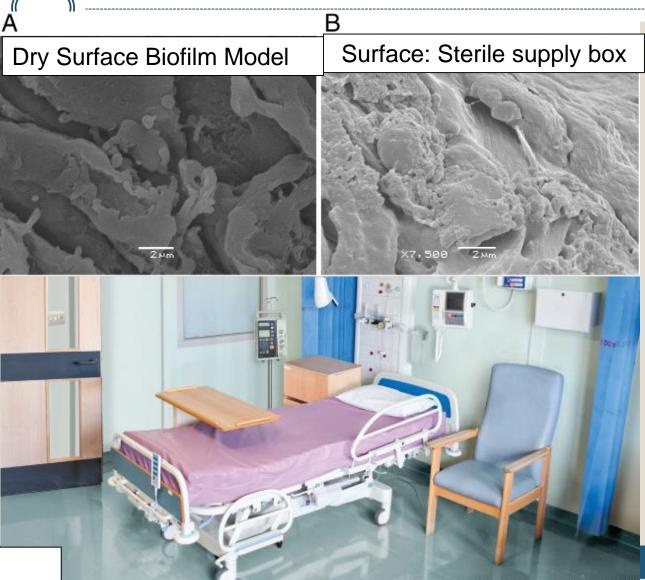

Gradual accumulation of residual material:

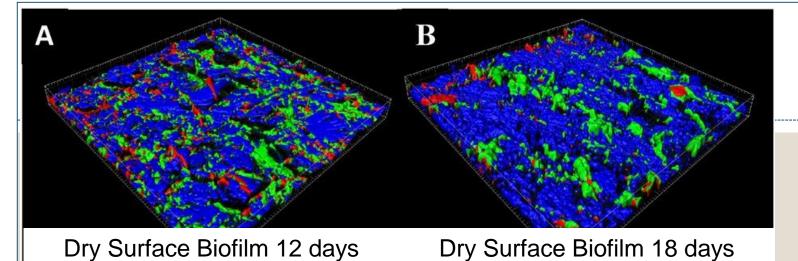
- Inadequate HLD
- Inadequate Low Temperature Sterilization


Endoscope storage: Inadequate Drying

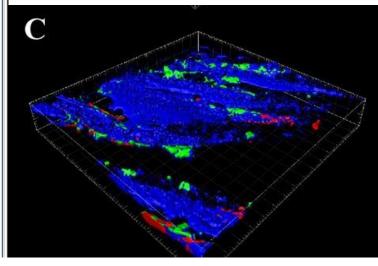
<u>Patient-Ready</u> Scopes: After AER alcohol flush and forced air dry and overnight storage

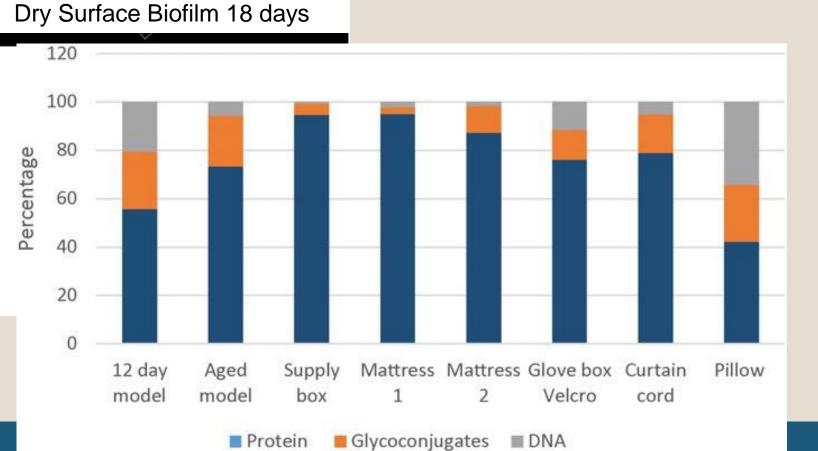
- Ambulatory Clinics; Visible fluid in 95% of channels (Ofstead 2017)
- Large Joint commission accredited Healthcare system: Visible fluid in 49% of channels Sites A & D; 85%, Site B; 0% (Ofstead 2018)

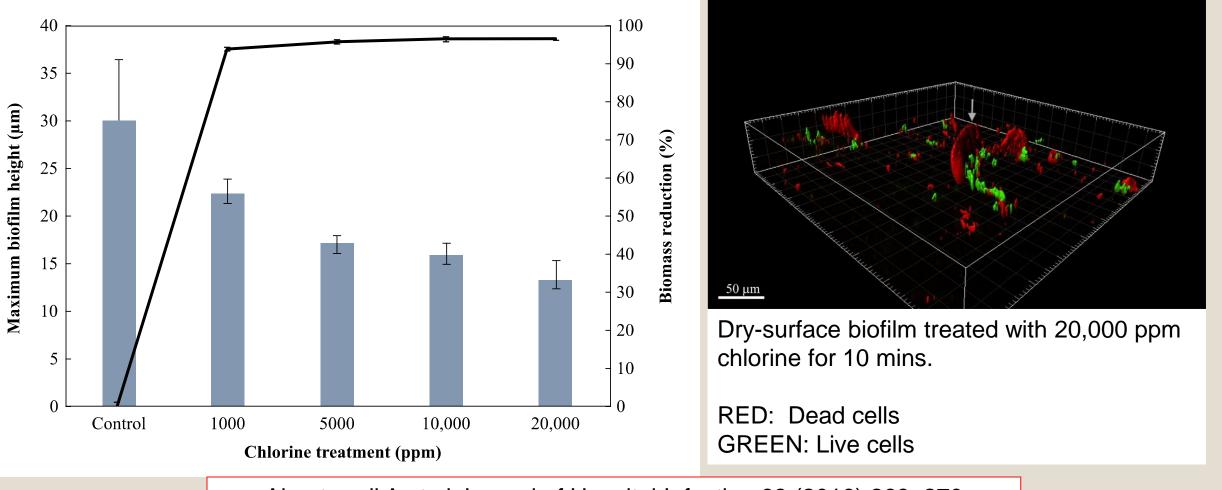

E	Evidence of GI Endoscope Contamination Rauwers AW et al. Gut 2018 doi: 10.1136/gutjnl-2017-315082				
	Culture: Neutralizer & sample concentrated by filtration				
Organism grown: GI flora		Number of Duodenoscopes	Quantity Range		
Yeast		7	6-100 CFU	Duodenoscopes:	
Klebsiella pneumoniae		4	100 - > 100 CFU	15% of 150 tested were contaminated	
Enterobacter cloacae		3	100 - > 100 CFU	(represents 67 Dutch	
Escherichia coli		2	50 – 100 CFU	ERCP centres)	
Klebsiella oxytoca		2	100 - > 100 CFU	* Current	
Enterococcus fa	ecium	1	1 CFU	reprocessing & process control	
Enterococcus fa	ecalis	1	100 CFU	procedures not	
Pseudomonas a	eruginosa	1	100 CFU	adequate	
Staphylococcus	aereus	1	> 100 CFU		


Dry Surface Biofilm

Accumulation of material after repeated surface cleaning
Protein, DNA,


Glycoconjugate


Almtroudi et al J Microbiological Methods 2015;117:171-176


Blue: Protein Red: Bacterial DNA Green: Gycoconjugate

Clinical Glove box Velcro Biofilm

Chlorine killing ineffective against *S.aureus* in Dry-surface biofilm

Almatroudi A et al Journal of Hospital Infection 93 (2016) 263e270

Repeated cleaning/disinfection of Environmental Surfaces:

- Is physical removal of dry-surface biofilm in healthcare adequate?
- Are various healthcare surface disinfectants able to penetrate and kill microbes in dry-surface biofilm?
- Does dry-surface biofilm facilitate infection transmission from environmental reservoir?

Conclusions

• Surgical Instruments:

- Residual patient material build-up from improper cleaning can protect organisms from steam sterilization

Flexible Endoscopes

- Wet storage facilitates biofilm formation
- Organisms in Build-up biofilm or traditional biofilm can survive HLD and low temperature sterilization

• Dry-surface Biofilm:

- Better represents healthcare environmental surfaces
- Protects microbes from chlorine

Help to Ban the Biofilm!

- 1. Southworth P.M. Infections and exposures: reported incidents associated with unsuccessful decontamination of reusable surgical instruments. J Hospital Infection 2014;88:127-131
- 2. Akinbobola A et al Tolerance of Pseudomonas aeruginosa in in-vitro biofilms to high-level peracetic acid disinfectionJ Hosp Infection 2017. http://dx.doi.org/10.1016/j.jhin.2017.06.024
- 3. Tosh PK et al Outbreak of P. aeruginosa surgical site infections after arthroscopic procedures: Texas, 2009. ICHE 2011;32:1179-1186
- 4. Zuluski S. J. Cataract Surgery 1999;25:540-545.
- 5. Pesant C et al. An outbreak of surgical site infections following craniotomy procedures associated with a change in the ultrasonic surgical aspirator decontamination process. AJIC 2017;45:433-5.
- 6. Dancer SJ et al Surgical site infections linked to contaminated surgical instruments. J Hosp Infect 2012;81:231-238
- 7. Gillespie J.L et al Outbreak of Pseudomonas aeruginosa Infections After Transrectal Ultrasound- Guided Prostate BiopsyJ Urology 2007; 69: 912–914
- 8. Deshpande et al 2015 Biofouling of surgical power tools during routine use. http://dx.doi.org/10.1016/j.jhin.2015.03.006
- 9. Almtroudi et al A new dry-surface biofilm model: An essential tool for efficacy testing of hospital surface decontamination procedures. J Microbiological Methods 2015;117:171-176
- 10. Bridier A, et al. Biofilms of a Bacillus subtilis Hospital Isolate Protect Staphylococcus aureus from Biocide Action. PLoS ONE doi:10.1371/journal.pone.0044506
- 11. Pajkos A, Vickery K, Cossart Y. Is biofilm accumulation on endoscope tubing a contributor to the failure of cleaning and decontamination? J Hosp Infect 2004;58:224-9.
- 12. Ren-Pei W et al Correlation between the growth of bacterial biofilm in flexible endoscopes and endoscope reprocessing methods AJIC 2014; 42:1203http://dx.doi.org/10.1016/j.ajic.2014.07.029
- 13. Alfa MJ et al A novel polytetrafluoroethylene-channel model, which simulates low levels of culturable bacteria in buildup biofilm after repeated endoscope reprocessing. Gastrointest Endosc 2017;86:442-51
- 14. Naryzhny I, Silas D, Chi K, Impact of Ethylene Oxide Gas Sterilization of Duodenoscopes after a Carbapenem-Resistant Enterobacteriaceae Outbreak, Gastrointestinal Endoscopy (2016), doi: 10.1016/j.gie.2016.01.055.
- 15. Bartles RL, et al, A randomized trial of single versus double high-level disinfection of duodenoscopes and linear echoendoscopes using standard automated reprocessing, Gastrointestinal Endoscopy (2018), doi: 10.1016/j.gie.2018.02.016.
- 16. Snyder GM et al Randomized Comparison of 3 High-Level Disinfection and Sterilization Procedures for Duodenoscopes. Gastroenterology 2017;153:1018–1025
- 17. Visrodia K et al Duodenoscope reprocessing surveillance with adenosine triphosphate testing and terminal cultures: a clinical pilot study. Gastrointest Endosc 2017 http://dx.doi.org/10.1016/j.gie.2017.03.1544
- 18. Almtroudi A et al Staphylococcus aureus dry-surface biofilms are not killed by sodium hypochlorite: implications for infection control. Journal of Hospital Infection 93 (2016) 263e270
- 19. Ofstead C et al Longitudinal assessment of reprocessing effectiveness for colonoscopes and gastroscopes: Results of visual inspections, biochemical markers, and microbial cultures. AJIC 2017;45:e26-e33 doi.org/10.1016/j.ajic.2016.10.017
- 20. Ofstead C et al Residual moisture and waterborne pathogens inside flexible endoscopes: Evidence from a multisite study of endoscope drying effectivenessAJIC 2018;45:e26-e33 doi.org/10.1016/j.ajic.2018.03.002
- 21. Rawers AJ et al. High prevalence rate of digestive tract bacteria in duodenoscopes: a nationwide study. Gut doi:10.1136/ gutjnl-2017-315082