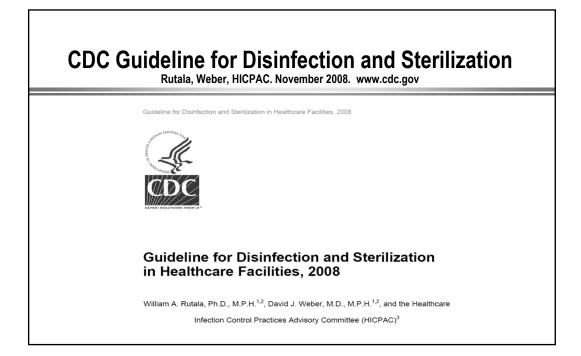
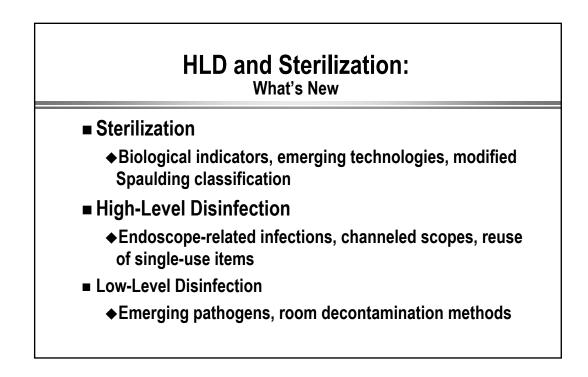

HLD and Sterilization: What's New?

- Sterilization
 - Biological indicators, emerging technologies, modified Spaulding classification
- High-Level Disinfection
 - Endoscope-related infections, channeled scopes, reuse of single-use items
- Low-Level Disinfection
 - Emerging pathogens, room decontamination methods

www.disinfectionandsterilization.org

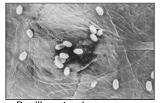

Health Care Facilities Need to Immediately Medical Device Reprocessing Procedures

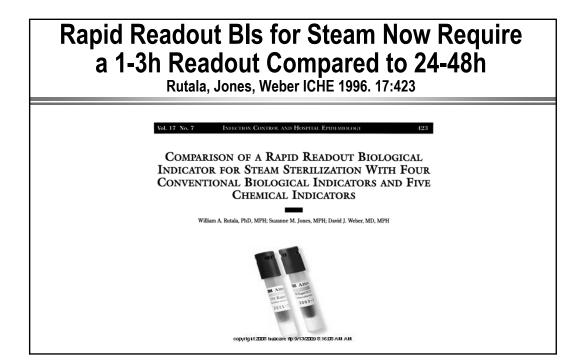

Train Staff, Audit Adherence to Steps, Provide Feedback on Adherence

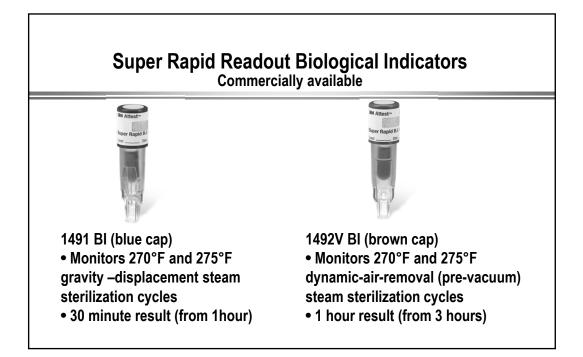
Health Care Facilities Need to Immediately Medical Device Reprocessing Procedures

- Reprocessing lapses resulting in patient infections and exposures
- Healthcare facilities urged to immediately review current reprocessing practices to ensure comply with device manufacturer and guidelines
 - Training (upon hire and at least annually), demonstrate and document competency
 - Audit should assess all reprocessing steps including cleaning, disinfectants (conc, contact time), sterilizer (chemical, biological indicators). Feedback from audits to personnel regarding adherence.

Sterilization of "Critical Objects"

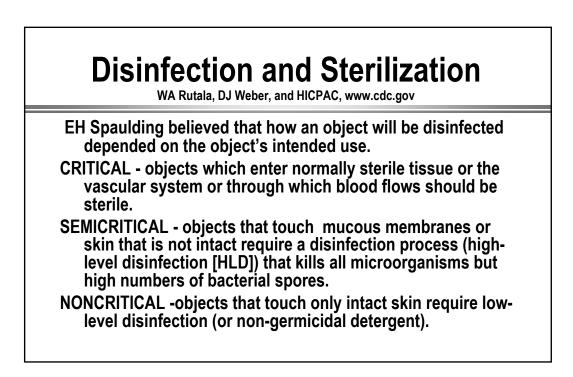

Steam sterilization Hydrogen peroxide gas plasma Ethylene oxide Ozone Vaporized hydrogen peroxide Steam formaldehyde

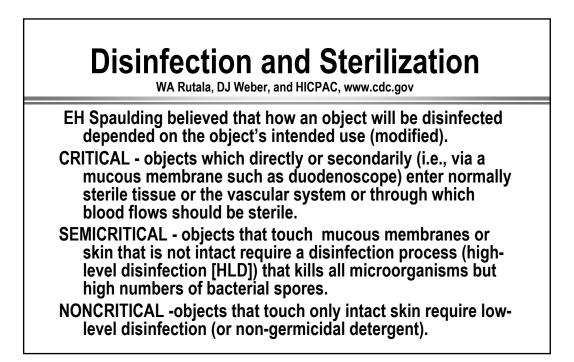

- Sterizone VP4, 510(k) FDA clearance, TSO₃ Canada
- Sterilizer has a 4.4ft³ chamber
- Advantages/Disadvantages-not yet known

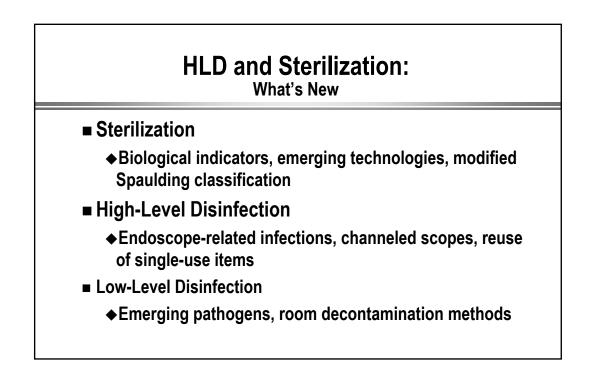

Biological Indicators

- Select BIs that contain spores of Bacillus atrophaeus
 - Rationale: BIs are the only sterilization process monitoring device that provides a direct measure of the lethality of the process

Bacillus atrophaeus

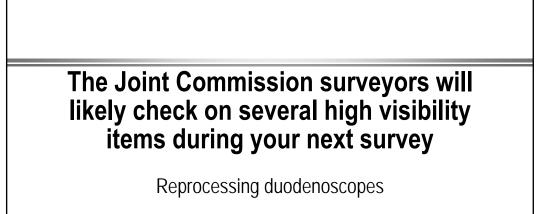

RECENT ENDOSCOPY-RELATED OUTBREAKS OF MRDO WITHOUT REPROCESSING BREACHES

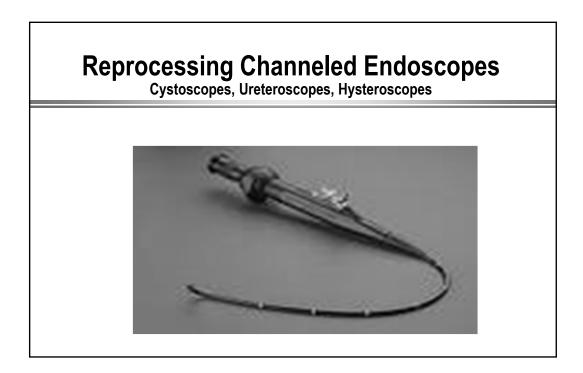

MDRO	Scope	No.	Recovered From Scope	Molecular Link	Reference
P. aeruginosa (VIM-2)	Duodenoscope	22	Yes, under forceps elevator	Yes	Verfaillie CJ, 2015
E. coli (AmpC)	Duodenoscope	7	Yes (2 scopes)	Yes (PFGE)	Wendort, 2015
K. pneumoniae (OXA)	Duodenoscope	5	No		Kola A, 2015
E. coli (NDM-CRE)	Duodenoscope	39	Yes	Yes (PFGE)	Epstein L, 2014

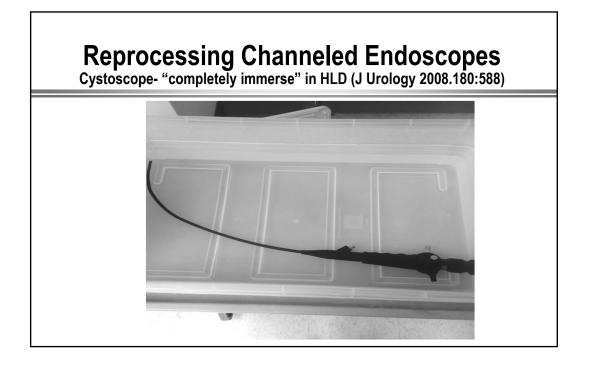

Additional Outbreaks (not published; news media reports)

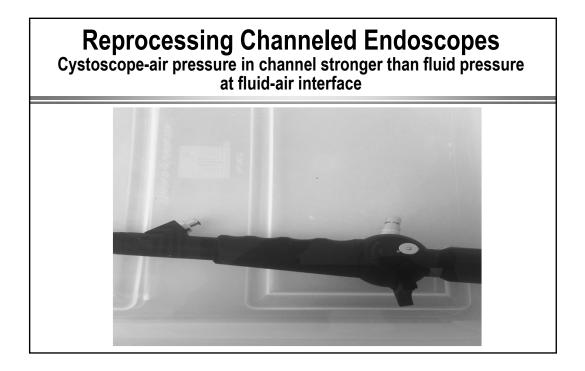
- UCLA, 2015, CRE, 179 patients exposed (2 deaths), 2 colonized duodenoscopes
- CMC, 2015, CRE, 18 patients exposed (7 infected), duodenoscopes
- Cedars-Sinai, 2015, CRE, 67 patients exposed (4 infected), duodenoscopes
- Wisconsin, 2013, CRE, (5 infected), duodenoscopes
- University of Pittsburgh, 2012, CRE, 9 patients, duodenoscopes

FDA Panel, May 2015, Recommended Sterilization of Duodenoscopes (requires FDA-cleared technology that achieves a SAL 10⁻⁶ with duodenoscopes)

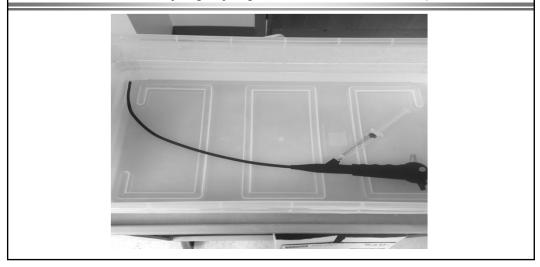


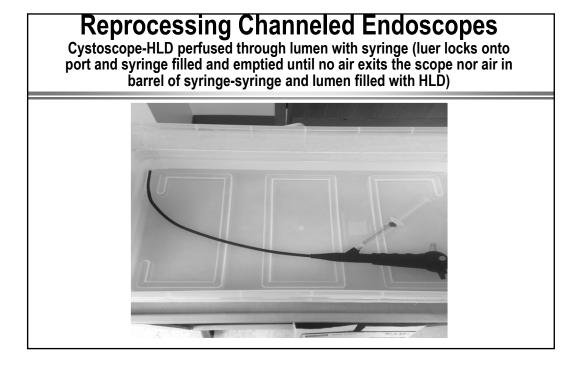


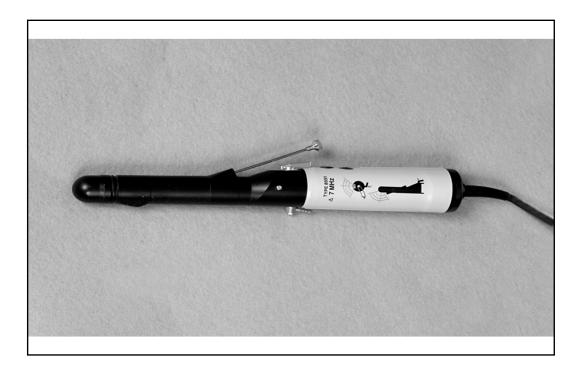

DISINFECTION AND STERILIZATION


- EH Spaulding believed that how an object will be disinfected depended on the object's intended use
 - CRITICAL objects which enter normally sterile tissue or the vascular system or through which blood flows should be sterile
 - SEMICRITICAL objects that touch mucous membranes or skin that is not intact require a disinfection process (high-level disinfection[HLD]) that kills all microorganisms except for high numbers of bacterial spores
 - NONCRITICAL objects that touch only intact skin require lowlevel disinfection

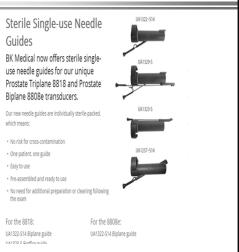
High-Level Disin "Semicritical O		
Exposure Time ≥ 8m	-45m (US), 20ºC	
Germicide	Concentration	
Glutaraldehyde Ortho-phthalaldehyde Hydrogen peroxide* Hydrogen peroxide and peracetic acid* Hydrogen peroxide and peracetic acid* Hypochlorite (free chlorine)* Accelerated hydrogen peroxide Peracetic acid Glut and isopropanol Glut and phenol/phenate**	≥ 2.0% 0.55% 7.5% 1.0%/0.08% 7.5%/0.23% 650-675 ppm 2.0% 0.2% 3.4%/26% 1.21%/1.93%	







Reprocessing Channeled Endoscopes Cystoscope-HLD perfused through lumen with syringe (luer locks onto port and syringe filled and emptied until no air exits the scope nor air in barrel of syringe-syringe and lumen filled with HLD)

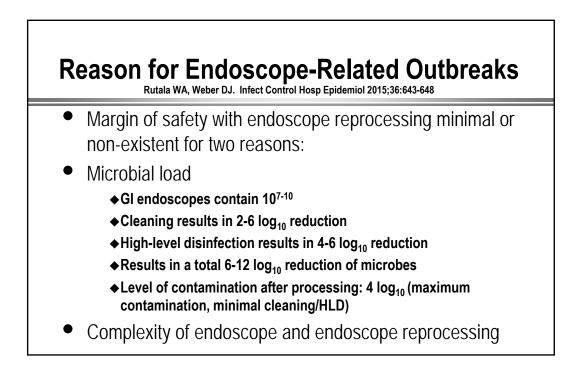

Rej			nneled Endoscopes rst, Weber. ICHE. In press
Exposure Method	VRE Contamination Before HLD (glutaraldehyde)	VRE Contamination After HLD	 Pathogens must have exposure to HLD for inactivation Immerse channeled flexible scope into HLD will not inactivate channel
Passive HLD (immersed, not perfused)	3.6x10 ⁸ 2.0x10 ⁸ 1.1x10 ⁸	7.5x10 ⁸ 1.0x10 ⁸ 6.8x10 ⁷	 pathogens Completely immerse the endoscope in HLD and ensure all channels are perfused
Active HLD (perfused HLD into channel with syringe)	8.4x10 ⁷ 1.5x10 ⁸ 2.8x10 ⁸	1 CFU 0 0	 Air pressure in channel stronger than fluid pressure at fluid-air interface

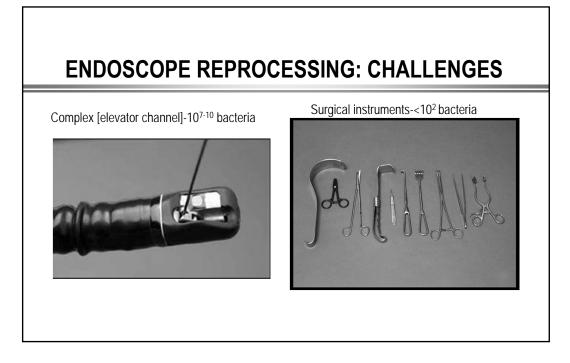
Do Not Reuse Single-Use Devices

- Federal judge convicted a urologist who reused needle guides meant for single use during prostate procedures (Sept 2014)
- Third party reprocessor OK
- Criminal prosecution (based on conspiracy to commit adulteration)

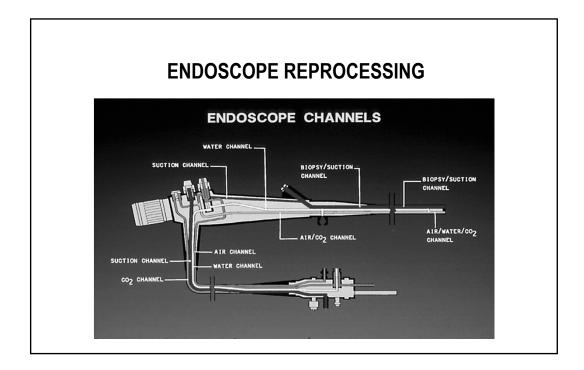
RECENT ENDOSCOPY-RELATED OUTBREAKS OF MRDO WITHOUT REPROCESSING BREACHES

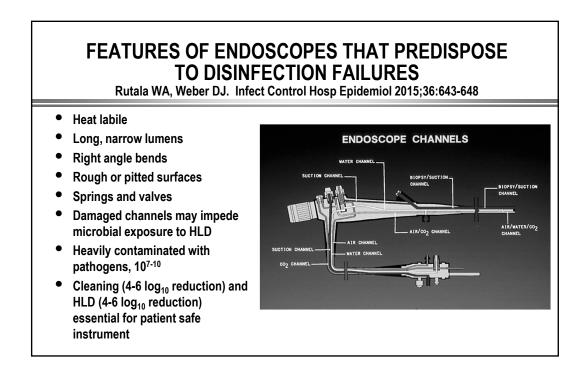
MDRO	Scope	No.	Recovered From Scope	Molecular Link	Reference
P. aeruginosa (VIM-2)	Duodenoscope	22	Yes, under forceps elevator	Yes	Verfaillie CJ, 2015
E. coli (AmpC)	Duodenoscope	7	Yes (2 scopes)	Yes (PFGE)	Wendort, 2015
K. pneumoniae (OXA)	Duodenoscope	5	No		Kola A, 2015
E. coli (NDM-CRE)	Duodenoscope	39	Yes	Yes (PFGE)	Epstein L, 2014

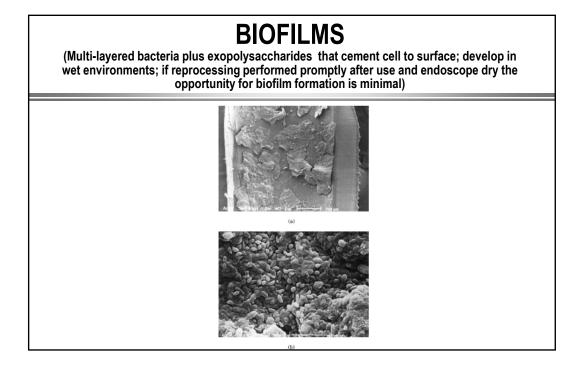

Additional Outbreaks (not published; news media reports)


- UCLA, 2015, CRE, 179 patients exposed (2 deaths), 2 colonized duodenoscopes
- CMC, 2015, CRE, 18 patients exposed (7 infected), duodenoscopes
- Cedars-Sinai, 2015, CRE, 67 patients exposed (4 infected), duodenoscopes
- Wisconsin, 2013, CRE, (5 infected), duodenoscopes
- University of Pittsburgh, 2012, CRE, 9 patients, duodenoscopes

Endemic Transmission of Infections Associated with GI Endoscopes May Go Unrecognized




- Inadequate surveillance of outpatient procedures for healthcare-associated infections
- Long lag time between colonization and infection
- Low frequency of infection
- Pathogens "usual" enteric flora
- Risk of some procedures might be lower than others (colonoscopy versus ERCP where normally sterile areas are contaminated in the latter)

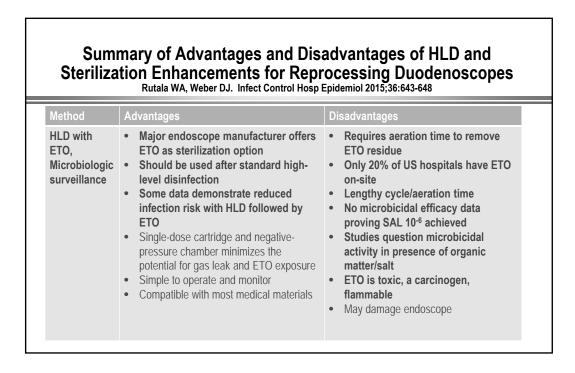


Reason for Endoscope-Related Outbreaks Rutala WA, Weber DJ. Infect Control Hosp Epidemiol 2015;36:643-648

- Margin of safety with endoscope reprocessing minimal or non-existent •
- **Microbial load**
 - ◆GI endoscopes contain 10⁷⁻¹⁰
 - ◆Cleaning results in 2-6 log₁₀ reduction
 - ♦ High-level disinfection results in 4-6 log₁₀ reduction
 - ♦ Results in a total 6-12 log₁₀ reduction of microbes
 - ◆Level of contamination after processing: 4log₁₀ (maximum contamination, minimal cleaning/HLD)
- Complexity of endoscope
- Biofilms-unclear if contribute to failure of endoscope reprocessing

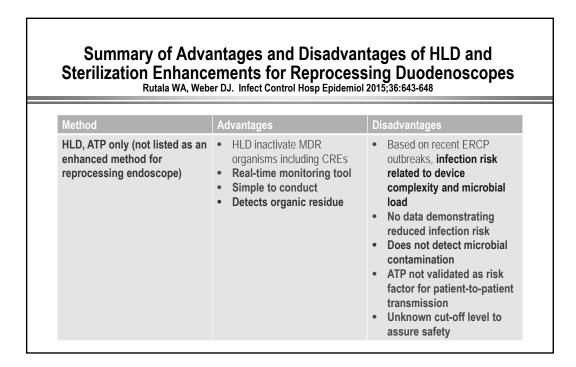
What Should We Do Now?

How Can We Prevent ERCP-Related Infections?


Rutala WA, Weber DJ. Infect Control Hosp Epidemiol 2015;36:643-648

- No single, simple and proven technology or prevention strategy that hospitals can use to guarantee patient safety
- Of course, must continue to emphasize the enforcement of evidenced-based practices, including equipment maintenance and routine audits with at least yearly competency testing of reprocessing staff
- Must do more or additional outbreaks will continue

Current Enhanced Methods for Reprocessing Duodenoscopes Rutala WA, Weber DJ. Infect Control Hosp Epidemiol 2015;36:643-648


Hospitals performing ERCPs should do one of the following (priority ranked). Doing nothing is not an option:

- Ethylene oxide sterilization after high level disinfection with periodic microbiologic surveillance (UNC Hospitals)
- Double high-level disinfection with periodic microbiologic surveillance
- High-level disinfection with scope quarantine until negative culture
- Liquid chemical sterilant processing system using peracetic acid (rinsed with extensively treated potable water) with periodic microbiologic surveillance
- High-level disinfection with periodic microbiologic surveillance

Summary of Advantages and Disadvantages of HLD and Sterilization Enhancements for Reprocessing Duodenoscopes Rutala WA, Weber DJ. Infect Control Hosp Epidemiol 2015;36:643-648

Method HLD only (not listed as an HLD inactivate MDR • Based on recent ERCP enhanced method for organisms including CREs outbreaks, infection risk reprocessing endoscope) Current standard of care related to device Wide availability complexity and microbial load No enhancement to reduce infection risk associated with ERCP scopes • Some HLD (e.g., aldehydes) may cross-link proteins

UNC Hospitals Interim Response to ERCP Outbreaks

- Ensure endoscopes are reprocessed in compliance with national guidelines (CDC, ASGE, etc)
- Evaluate CRE culture-positive patients for ERCP exposure
- In the short term, enhance reprocessing of ERCP scopes; reprocess ERCP scopes by HLD followed for ETO sterilization
- Microbiologic surveillance, 5-10% of scopes monthly
- When new recommendations are available from ASGE, CDC, FDA, etc. comply

Current Enhanced Methods for Reprocessing Duodenoscopes

Rutala WA, Weber DJ. Infect Control Hosp Epidemiol 2015;36:643-648

Hospitals performing ERCPs should do one of the following (priority ranked); doing nothing is not an option:

- Ethylene oxide sterilization after high level disinfection with periodic microbiologic surveillance (UNC Hospitals)
- Double high-level disinfection with periodic microbiologic surveillance
- High-level disinfection with scope quarantine until negative culture
- Liquid chemical sterilant processing system using peracetic acid (rinsed with extensively treated potable water) with periodic microbiologic surveillance
- High-level disinfection with periodic microbiologic surveillance

To protect the public health we (FDA, industry, professional organizations) must shift duodenoscope reprocessing from HLD to sterilization..

Rutala, Weber. JAMA 2014. 312:1405-1406

EDITORIAL

←

Related article page 1447

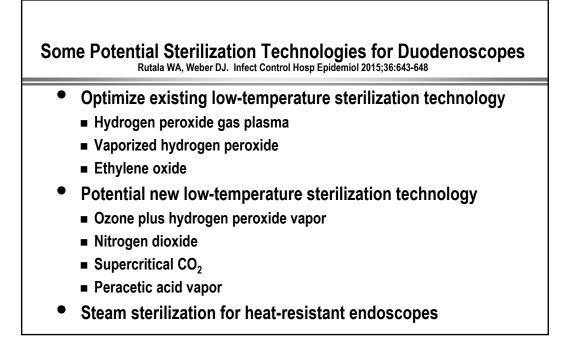
Editorials represent the opinions of the authors and JAMA and not those of the American Medical Association.

Gastrointestinal Endoscopes A Need to Shift From Disinfection to Sterilization?

William A. Rutala, PhD, MPH; David J. Weber, MD, MPH

More than 10 million gastrointestinal endoscopic procedures are performed annually in the United States for diagnostic purposes, therapeutic interventions, or both.¹ Because gastrointestinal endoscopes contact mucosal surfaces, use of a contaminated endoscope may lead to patient-to-patient transmission of potential pathogens with a subsequent risk of infection.¹

In this issue of JAMA, Epstein and colleagues² report findings from their investigation of a cluster of New Delhi metallo- β -lactamase (NDM)-producing *Escherichia coli* associated with gastrointestinal endoscopy that occurred from March 2013 to July 2013 in a single hospital in


northeastern Illinois. During the 5-month period, 9 paFirst, endoscopes are semicritical devices, which contact mucous membranes or nonintact skin, and require at least highlevel disinfection.^{3,4} High-level disinfection achieves complete elimination of all microorganisms, except for small numbers of bacterial spores. Because flexible gastrointestinal endoscopic instruments are heat labile, only high-level disinfection with chemical agents or low-temperature sterilization technologies are possible.³ However, no low-temperature sterilization technologies gastrointestinal endoscopes such as duodenoscopes.

Second, more health care-associated outbreaks and clusters of infection have been linked to contaminated endoscopes than to any other medical device.^{3,5} However, until now.

Potential future methods to prevent GIendoscope-related infections?

Potential Future Methods to Prevent GI-Endoscope Related Outbreaks Rutala WA, Weber DJ. Infect Control Hosp Epidemiol 2015;36:643-648

- Steam sterilization of GI endoscopes
- New (or optimize) low temperature sterilization methods proving SAL 10⁻⁶ achieved
- Disposable sterile GI endoscopes
- Improved GI endoscope design (to reduce or eliminate challenges listed earlier)
- Use of non-endoscope methods to diagnosis or treat disease (e.g., capsule endoscopy, blood tests to detect GI cancer, stool DNA test)

What Is the Public Health Benefit? No ERCP-Related Infections

Margin of Safety-currently nonexistent; sterilization will provide a safety margin (~ $6 \log_{10}$). To prevent infections, all duodenoscopes should be devoid of microbial contamination.

HLD (6 log₁₀ reduction)

٧S

Sterilization (12 log₁₀ reduction=SAL 10⁻⁶)

FDA Panel, May 2015, Recommended Sterilization of Duodenoscopes

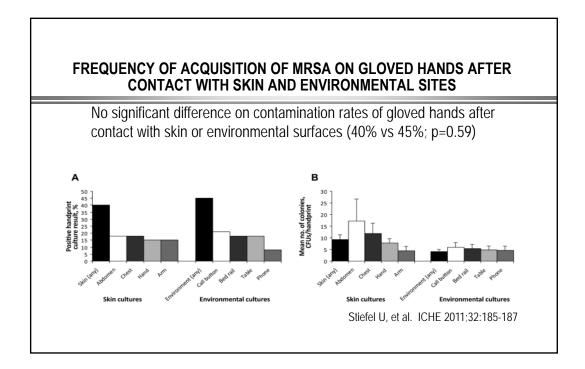
HLD and Sterilization: What's New Sterilization Biological indicators, emerging technologies, modified Spaulding classification High-Level Disinfection Endoscope-related infections, channeled scopes, reuse of single-use items Low-Level Disinfection Emerging pathogens, improved room decontamination methods

ENVIRONMENTAL CONTAMINATION LEADS TO HAIs

- There is increasing evidence to support the contribution of the environment to disease transmission
- This supports comprehensive disinfecting regimens (goal is not sterilization) to reduce the risk of acquiring a pathogen from the healthcare environment/equipment

KEY PATHOGENS WHERE ENVIRONMENTIAL SURFACES PLAY A ROLE IN TRANSMISSION

- MRSA
- VRE
- Acinetobacter spp.
- Clostridium difficile
- Norovirus
- Rotavirus
- SARS

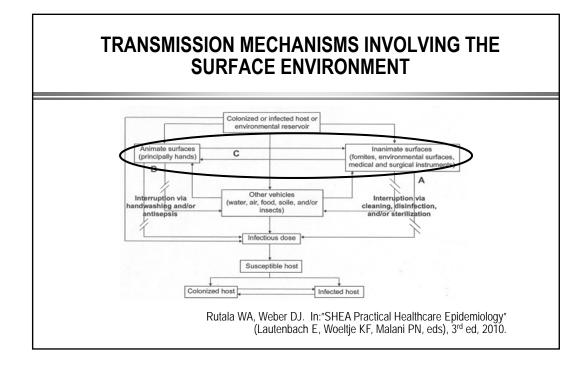

ENVIRONMENTAL CONTAMINATION ENDEMIC AND EPIDEMIC MRSA

	Outbreak	Endemic				Site estimate mean§
	Rampling et al ²⁷ *	Boyce et al48*	Sexton et al ⁵¹ †	Lemmen et also*‡	French et al ^{64*}	T
Floor	9%	50-55%	44-60%	24%		34.5%
Bed linen		38-54%	44%	34%		41%
Patient gown		40-53%		34%		40.5%
Overbed table		18-42%	64-67%	24%		40%
Blood pressure cuff	13%	25-33%				21%
Bed or siderails	5%	1-30%	44-60%	21%	43%	27%
Bathroom door handle		8-24%		12%¶		14%
Infusion pump button	13%	7–18%		30%		19%
Room door handle	11%	4-8%		23%	59%	21.5%
Furniture	11%		44-59%	19%		27%
Flat surfaces	7%		32-38%			21.5%
Sink taps or basin fitting				14%	33%	23.5%
Average quoted**	11%	27%	49%	25%	74%	37%

ENVIRONMENTAL SURVIVAL OF KEY PATHOGENS ON HOSPITAL SURFACES

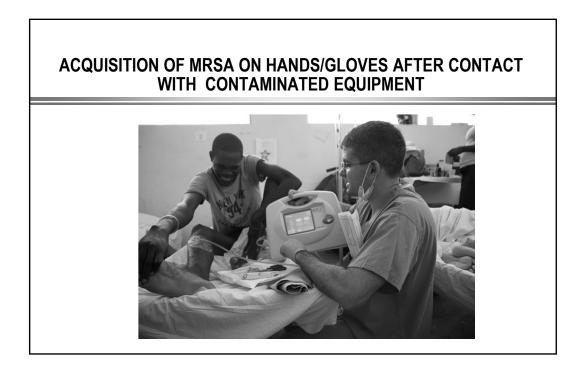
Pathogen S. aureus (including MRSA) Enterococcus spp. (including VRE) Acinetobacter spp. Clostridium difficile (spores) Norovirus (and feline calicivirus) Pseudomonas aeruginosa Klebsiella spp. Survival Time 7 days to >12 months 5 days to >46 months 3 days to 11 months >5 months 8 hours to >2 weeks 6 hours to 16 months 2 hours to >30 months

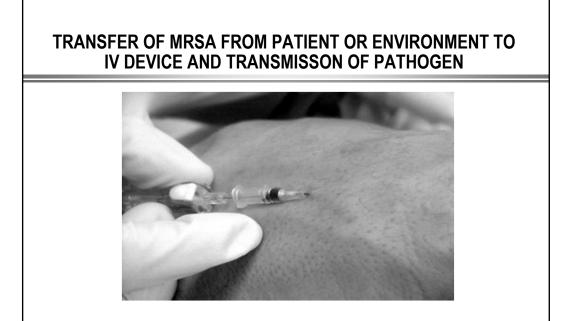
Adapted from Hota B, et al. Clin Infect Dis 2004;39:1182-9 and Kramer A, et al. BMC Infectious Diseases 2006;6:130

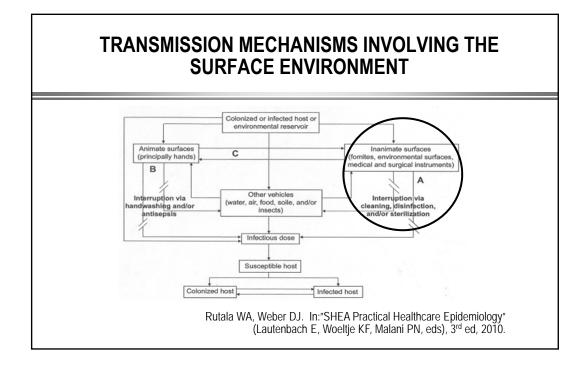


EVALUATION OF HOSPITAL ROOM ASSIGNMENT AND ACQUISITION OF CDI

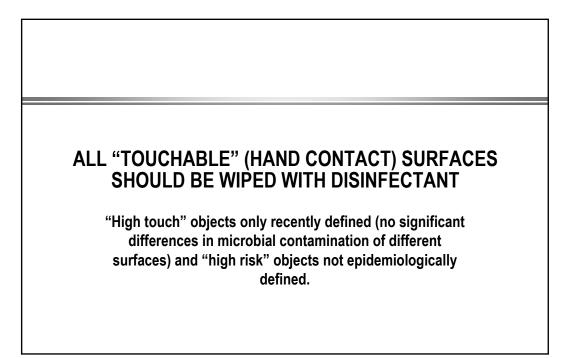
- Study design: Retrospective cohort analysis, 2005-2006
- Setting: Medical ICU at a tertiary care hospital
- Methods: All patients evaluated for diagnosis of CDI 48 hours after ICU admission and within 30 days after ICU discharge
- Results (acquisition of CDI)
 - Admission to room previously occupied by CDI = 11.0%
 - Admission to room not previously occupied by CDI = 4.6% (p=0.002)


Shaughnessy MK, et al. ICHE 2011;32:201-206


Risk factor	HR (95% CI)	P
Prior room occupant with CDI	2.35 (1.21-4.54)	.01
Greater age	1.00(0.99 - 1.01)	.71
Higher APACHE III score	1.00(1.00-1.01)	.06
Proton pump inhibitor use	1.11(0.44 - 2.78)	.83
Antibiotic exposure		
Norfloxacin	0.38 (0.05-2.72)	.33
Levofloxacin	1.08 (0.67-1.73)	.75
Ciprofloxacin	0.49 (0.15-1.67)	.23
Fluoroquinolones	1.17 (0.72-1.91)	.53
Clindamycin	0.45 (0.14-1.42)	.17
Third- or fourth-generation		
cephalosporins	1.17 (0.76-1.79)	.48
Carbapenems	1.05 (0.63-1.75)	.84
Piperacillin-tazobactam	1.31 (0.82-2.10)	.27
Other penicillin	0.47 (0.23-0.98)	.04
Metronidazole	1.31 (0.83-2.07)	.24
Vancomycin		
Oral	1.38 (0.32-5.89)	.67
Intravenous	1.55 (0.88-2.73)	.13
Aminoglycosides	1.27 (0.78-2.06)	.35
Multiple (≥3 antibiotic		
classes)	1.28 (0.75-2.21)	.37

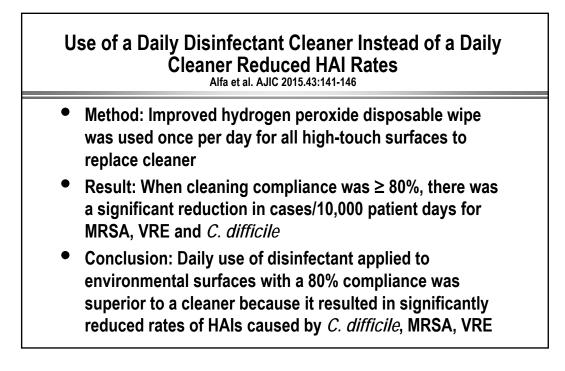


ACQUISITION OF MRSA ON HANDS AFTER CONTACT WITH ENVIRONMENTAL SITES

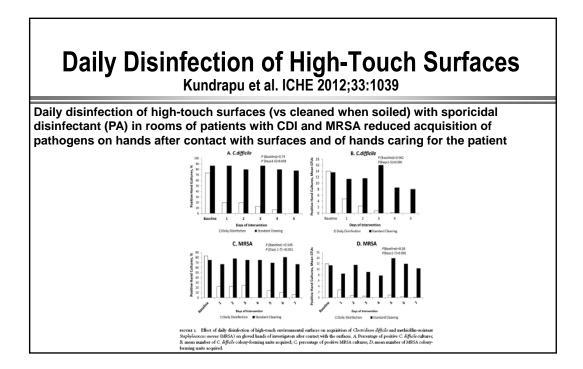


Product and Practice = Perfection

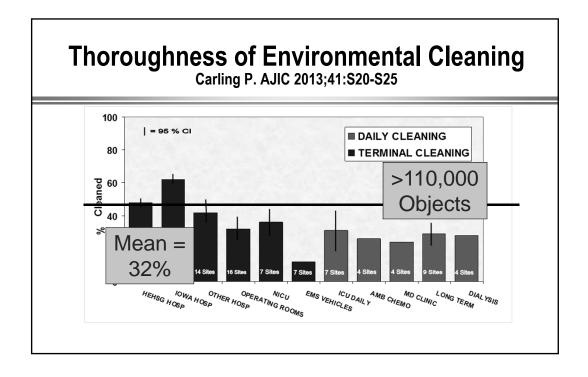
LOW-LEVEL DISINFECTION FOR NONCRITICAL EQUIPMENT AND SURFACES

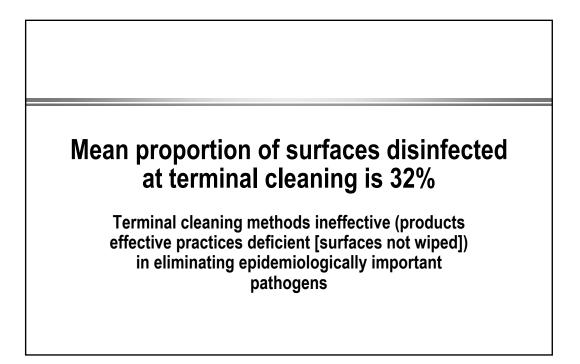

Ethyl or isopropyl alcohol	70-90%
hlorine	100ppm (1:500 dilution)
Phenolic	ÚD Í
odophor	UD
Quaternary ammonium	UD
mproved hydrogen peroxide	0.5%, 1.4%

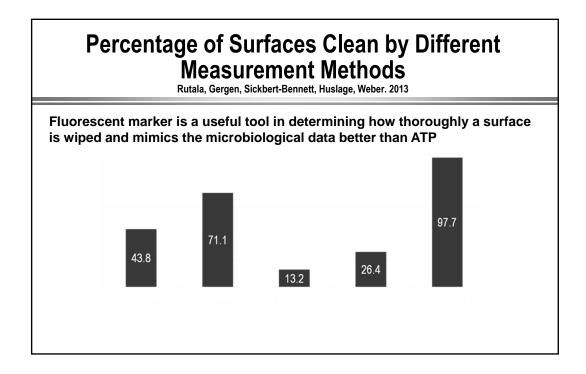
	ARTICLE IN PRESS
	American journal of Infection Control xox (2013) 1-8
	Contents lists available at ScienceDirect
	American Journal of Infection Control
infections?	journal homepage: www.ajicjournal.org
Major article Does improvin infections? Curtis J. Donskey N *Gristic Research, Education of	g surface cleaning and disinfection reduce health care-associated
Major article Does improvin infections? Curtis J. Donskey N *Gristic Research, Education of	g surface cleaning and disinfection reduce health care-associated 1D ^{a,b,*}

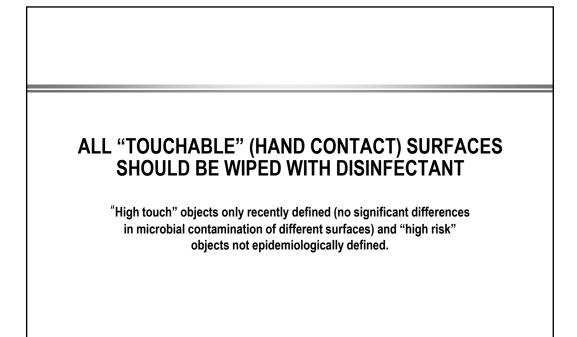

Does Improving Surface Cleaning and Disinfection Reduce Healthcare-Associated Infections? Donskey CJ. AJIC 2013;41:S12-S19


"As reviewed here, during the past decade a growing body of evidence has accumulated suggesting that improvements in environmental disinfection may prevent transmission of pathogens and reduce HAIs. Although, the quality of much of the evidence remains suboptimal, a number of high-quality investigations now support environmental disinfection as a control strategy"



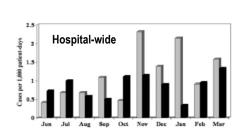




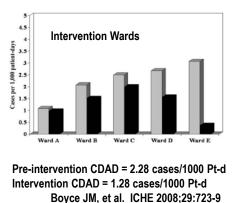


MONITORING THE EFFECTIVENESS OF CLEANING Cooper et al. AJIC 2007;35:338; Carling P AJIC 2013;41:S20-S25

- Visual assessment-not a reliable indicator of surface cleanliness
- ATP bioluminescence-measures organic debris (each unit has own reading scale, <250-500 RLU)
- Microbiological methods-<2.5CFUs/cm²-pass; can be costly and pathogen specific
- Fluorescent marker-transparent, easily cleaned, environmentally stable marking solution that fluoresces when exposed to an ultraviolet light (applied by IP unbeknown to EVS, after EVS cleaning, markings are reassessed)


EFFECTIVENESS OF UV-C FOR ROOM DECONTAMINATION (Inoculated Surfaces)					
Pathogens	Dose*	Mean log ₁₀ Reduction Lin of Sight	Mean log ₁₀ e Reduction Shadow	Time	Reference
MRSA, VRE, MDR-A	12,000	3.90-4.31	3.25-3.85	~15 min	Rutala W, et al. ¹
C. difficile	36,000	4.04	2.43	~50 min	Rutala W, et al. ¹
MRSA, VRE	12,000	>2-3	NA	~20 min	Nerandzic M, et al. ²
C. difficile	22,000	>2-3	NA	~45 min	Nerandzic M, et al. ²
C. difficle	22,000	2	3 overall	67.8 min	Boyce J, et al. ³
MRSA, VRE, MDR-A, Asp	12,000	35->4.0	1.7->4.0	30-40 min	Mahida N, et al.⁴
MRSA, VRE, MDR-A, Asp	22,000	<u>></u> 4.0*	1.0-3.5	60-90 min	Mahida N, et al.⁴
C. difficile, G. stear spore	22,000	2.	2 overall	73 min	Havill N et al⁵
VRE, MRSA, MDR-A CHE 2010;31:1025; ² BMC 2010 ¡Ws/cm ² ; min = minutes; NA =			1.18 ; ⁴ JHI 2013;84:323	25 min II ⁵ ICHE 2012;33	Anderson et al ⁶ :507-12 ⁶ ICHE 2013;34:46

HP for Decontamination of the Hospital Environment
Falagas et al. J Hosp Infect. 2011;78:171

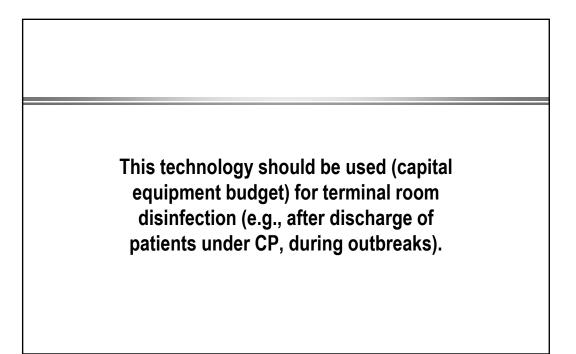

Author, Year	HP System	Pathogen	Before HPV	After HPV	% Reduction
French, 2004	VHP	MRSA	61/85-72%	1/85-1%	98
Bates, 2005	VHP	Serratia	2/42-5%	0/24-0%	100
Jeanes, 2005	VHP	MRSA	10/28-36%	0/50-0%	100
Hardy, 2007	VHP	MRSA	7/29-24%	0/29-0%	100
Dryden, 2007	VHP	MRSA	8/29-28%	1/29-3%	88
Otter, 2007	VHP	MRSA	18/30-60%	1/30-3%	95
Boyce, 2008	VHP	C. difficile	11/43-26%	0/37-0%	100
Bartels, 2008	HP dry mist	MRSA	4/14-29%	0/14-0%	100
Shapey, 2008	HP dry mist	C. difficile	48/203-24%; 7	7/203-3%; 0.4	88
Barbut, 2009	HP dry mist	C. difficile	34/180-19%	4/180-2%	88
Otter, 2010	VHP	GNR	10/21-48%	0/63-0%	100

IMPACT OF HPV ROOM DECONTAMINATON ON *C. difficile* TRANSMISSION

Incidence CDI: VHP Pre-intervention (grey) vs Intervention period (black)

Pre-intervention CDAD = 1.89 cases/1000 Pt-d Intervention CDAD = 0.88 cases/1000 Pt-d Nov 2004 through March 2005

Clinical Trials Using HP for Terminal Room Disinfection to Reduce HAIs

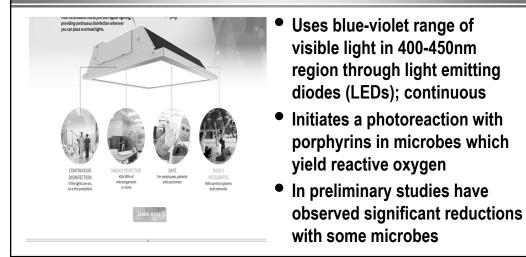

Weber, Rutala et al. Am J Infect Control, In press

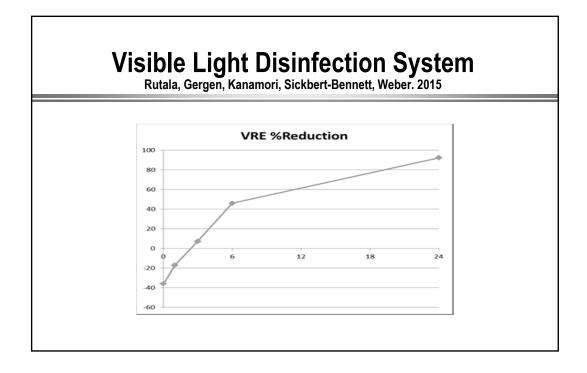
Author, Year	Design	Pathogen	Reduction in HAIs
Boyce, 2008	Before-After	CDI	Yes
Cooper, 2011	Before-After	CDI	Decrease cases (incidence not stated)
Passaretti, 2013	Prospective cohort	MRSA, VRE, CDI	Yes, in all MDROs
Manian, 2013	Before-After	CDI	Yes
Mitchell, 2014	Before-After	MRSA	Yes

Clinical Trials Using UV for Terminal Room Disinfection to Reduce HAIs

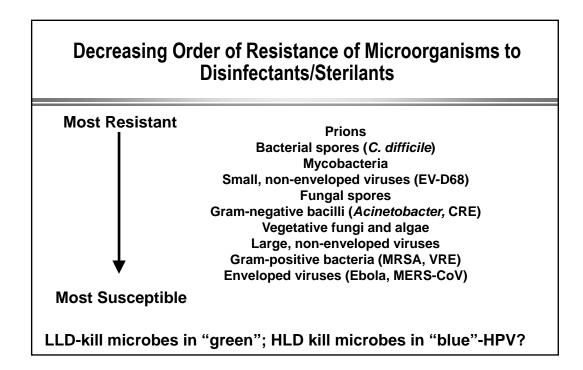
Weber, Rutala et al. Am J Infect Control, In press

Author, Year	Design	Pathogens	Reduction in HAIs
Levin, 2013	Before-After, Pulsed Xenon	CDI	Yes
Hass, 2014	Before-After, Pulsed Xenon	CDI, MRSA, VRE, MDRO-GNR	Yes
Miller, 2015	Before-After, Pulsed Xenon	CDI	Yes
Nagaraja, 2015	Before-After, Pulsed Xenon	CDI	Yes (p=0.06)
Pegues, 2015	Before-After, Optimum	CDI	Yes
Anderson, 2015	Randomized-controlled trial, Tru-D	MRSA, VRE, CDI	Yes


Selection of a UV or HP Device


Weber, Rutala et al. Am J Infect Control, In press

- Since different UV and hydrogen peroxide systems vary substantially, infection preventionists should review the peerreviewed literature and choose only devices with demonstrated bactericidal capability as assessed by carrier tests and/or the ability to disinfect actual patient rooms
- Ultimately, one would select a device that has demonstrated bactericidal capability and the ability to reduce HAIs


Must improve thoroughness of cleaning/disinfection daily basis also, evaluate new technologies

Visible Light Disinfection System Rutala, Gergen, Kanamori, Sickbert-Bennett, Weber. 2015

Norovirus, *C. difficile* spores, MERS-CoV, Enterovirus D68, Ebola, MDR organisms such carbapenemaseproducing *Enterobacteriaceae* (CRE) In general, emerging pathogens are susceptible to currently available disinfectants. However, some pathogens need additional information (e.g., HPV) or must modify disinfection/sterilization practices (e.g., *C. difficile* spores, prions)

C. difficile Spores EPA-Registered Products

- List K: EPA's Registered Antimicrobials Products Effective Against *C. difficile* spores, April 2014
- http://www.epa.gov/oppad001/list_k_clostridium.pdf
- 34 registered products; most chlorine-based, some HP/PA-based, PA with silver

SHEA Prion Guideline

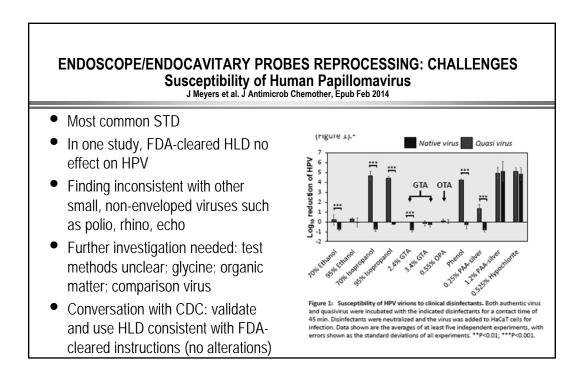
Rutala, Weber. Infect Control Hosp Epidemiol 2010;31:107

INFECTION CONTROL AND HOSPITAL EPIDEMIOLOGY FEBRUARY 2010, VOL. 31, NO. 2

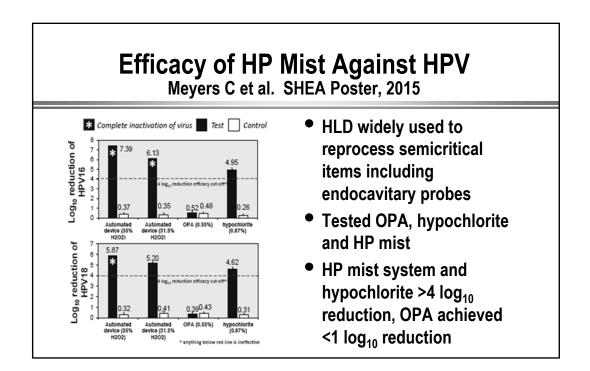
SHEA GUIDELINE

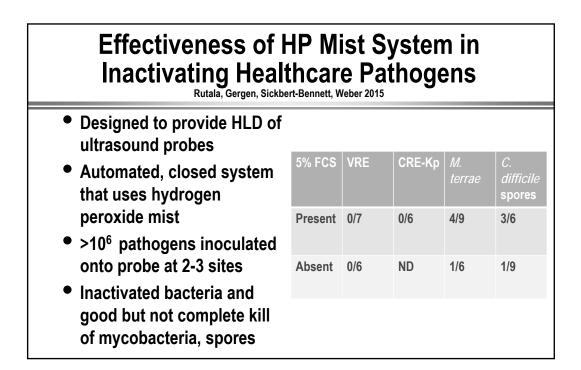
Guideline for Disinfection and Sterilization of Prion-Contaminated Medical Instruments

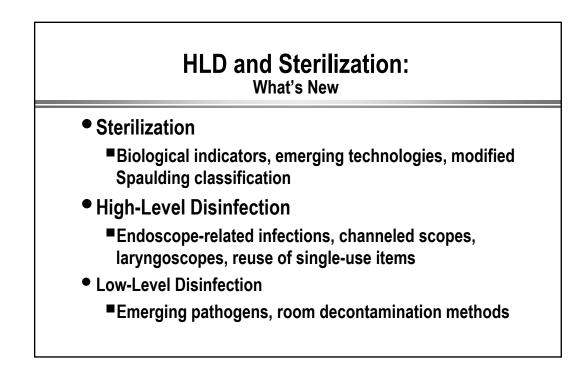
William A. Rutala, PhD, MPH; David J. Weber, MD, MPH

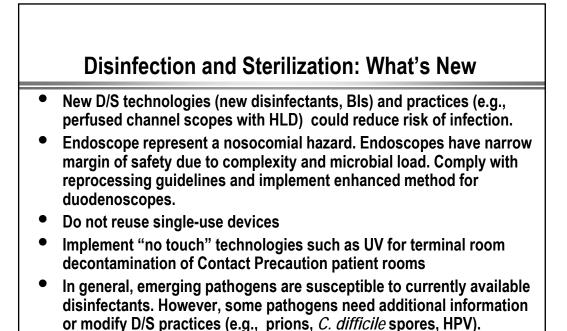

EPIDEMIOLOGY OF THE CREUTZFELDT-JAKOB DISEASE PRION tains. To date, no evidence for transmission of chronic wasting disease of deer and elk to humans has been identified.⁷⁻¹⁰

Creutzfeldt-Jakob disease (CJD) is a degenerative neurologic disorder of humans with an incidence in the United States of approximately 1 case per million population per year.¹⁻³


TRANSMISSION OF CJD VIA MEDICAL DEVICES


Management of Neurosurgical Instruments and Patients Exposed to CJD


- Conventional sterilization/disinfection inadequate for prions. Need special prion reprocessing (critical/semi device contaminated with high risk tissue from highrisk patient)
- Belay et al. ICHE 2014;34:1272. Decontamination options combine chemical and SS-1) immerse in 1N NaOH and heat in gravity at ≥121C for 30m in appropriate container; 2) immerse in 1N NaOH or NaOCI 20,000ppm 1h then transfer into water and autoclave at ≥121C for 1h; 3) immerse in 1N NaOH or NaOCI 20,000ppm 1h, rinse with water, transfer to pan and autoclave at 121C (gravity) or 134C (porous) for 1 hour. Clean and sterilize by conventional means.
- Thomas et al. J Clin Neurosci 2013;20:1207. Reviews prevention strategies
- McDonnell et al. J Hosp Infect. 2013;85:268. Investigates the combination of cleaning, disinfection and/or sterilization on prions
- Rutala, Weber. ICHE 2010;31:107. SHEA Guideline-134C for 18m in prevacuum or NaOH/autoclave (such as CDC option 2)



<section-header><section-header><text><image><image>

