An Overview of Disinfection and Sterilization in Healthcare

William A. Rutala, Ph.D., M.P.H.
University of North Carolina (UNC) Health Care System and UNC at Chapel Hill, NC
Disclosure: Advanced Sterilization Products and Clorox

Disinfection and Sterilization

- Provide overview of disinfection and sterilization recommendations
 - Indications and methods for sterilization, high-level disinfection and low-level disinfection
 - Cleaning of patient-care devices
 - Disinfection and sterilization practices

Disinfection and Sterilization in Healthcare Facilities

- Overview
 - Last Centers for Disease Control and Prevention guideline in 1985
 - 158 pages (>82 pages preamble, 34 pages recommendations, glossary of terms, tables/figures, >1000 references)
 - Evidence-based guideline
 - Cleared by HICPAC February 2003; delayed by FDA
 - Published in November 2008

Disinfection and Sterilization

EH Spaulding believed that how an object will be disinfected depended on the object's intended use.

CRITICAL - objects which enter normally sterile tissue or the vascular system or through which blood flows should be sterile.

SEMICRITICAL - objects that touch mucous membranes or skin that is not intact require a disinfection process (high-level disinfection [HLD]) that kills all microorganisms but high numbers of bacterial spores.

NONCRITICAL - objects that touch only intact skin require low-level disinfection (or non-germicidal detergent).

Disinfection and Sterilization

Processing “Critical” Patient Care Objects

Classification:	Critical objects enter normally sterile tissue or vascular system, or through which blood flows.
Object:	Sterility.
Level germicidal action:	Kill all microorganisms, including bacterial spores.
Examples:	Surgical instruments and devices; cardiac catheters; implants; etc.
Method:	Steam, gas, hydrogen peroxide plasma, vaporized hydrogen peroxide, ozone or chemical sterilization.
Critical Objects
- Surgical instruments
- Cardiac catheters
- Implants

Sterilization of “Critical Objects”
- Steam sterilization
- Hydrogen peroxide gas plasma
- Ethylene oxide
- Peracetic acid (0.2%)-chemical sterilization
- Ozone
- Vaporized hydrogen peroxide
- Steam formaldehyde

Chemical Sterilization of “Critical Objects”

<table>
<thead>
<tr>
<th>Germicide</th>
<th>Concentration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Glutaraldehyde (≥ 2.0%)</td>
<td>650-675 ppm</td>
</tr>
<tr>
<td>Hydrogen peroxide-HP (7.5%)</td>
<td>0.55%</td>
</tr>
<tr>
<td>Peracetic acid-PA (0.2%)</td>
<td>1.21%/1.93%</td>
</tr>
<tr>
<td>HP (1.0%) and PA (0.08%)</td>
<td>1.0%/0.08%</td>
</tr>
<tr>
<td>HP (7.5%) and PA (0.23%)</td>
<td>7.5%</td>
</tr>
<tr>
<td>Glut (1.12%) and Phenol/phenate (1.93%)</td>
<td>7.5%/0.23%</td>
</tr>
</tbody>
</table>

Exposure time per manufacturers’ recommendations

Processing “Semicritical” Patient Care Objects
- Classification: Semicritical objects come in contact with mucous membranes or skin that is not intact.
- Object: Free of all microorganisms except high numbers of bacterial spores.
- Level germicidal action: Kills all microorganisms except high numbers of bacterial spores.
- Examples: Respiratory therapy and anesthesia equipment, GI endoscopes, endocavitary probes, etc.
- Method: High-level disinfection

Semicritical Items
- Endoscopes
- Respiratory therapy equipment
- Anesthesia equipment
- Endocavitary probes
- Tonometers
- Diaphragm fitting rings

High Level Disinfection of “Semicritical Objects”

<table>
<thead>
<tr>
<th>Germicide</th>
<th>Concentration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Glutaraldehyde</td>
<td>≥ 2.0%</td>
</tr>
<tr>
<td>Ortho-phthalaldehyde (12 m)</td>
<td>0.55%</td>
</tr>
<tr>
<td>Hydrogen peroxide*</td>
<td>7.5%</td>
</tr>
<tr>
<td>Hydrogen peroxide and peracetic acid*</td>
<td>1.0%/0.08%</td>
</tr>
<tr>
<td>Hydrogen peroxide and peracetic acid*</td>
<td>7.5%/0.23%</td>
</tr>
<tr>
<td>Hypochlorite (free chlorine)*</td>
<td>650-675 ppm</td>
</tr>
<tr>
<td>Accelerated hydrogen peroxide</td>
<td>2.0%</td>
</tr>
<tr>
<td>Glut and phenol/phenate**</td>
<td>≥ 1.21%/1.93%</td>
</tr>
</tbody>
</table>

*May cause cosmetic and functional damage; **efficacy not verified
Processing “Noncritical” Patient Care Objects

Classification: Noncritical objects will not come in contact with mucous membranes or skin that is not intact.
Object: Can be expected to be contaminated with some microorganisms.
Level germicidal action: Kill vegetative bacteria, fungi and lipid viruses.
Examples: Bedpans; crutches; bed rails; EKG leads; bedside tables; walls, floors and furniture.
Method: Low-level disinfection (or detergent for housekeeping surfaces)

Low-Level Disinfection for “Noncritical” Objects

<table>
<thead>
<tr>
<th>Germicide</th>
<th>Use Concentration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ethyl or isopropyl alcohol</td>
<td>70-90%</td>
</tr>
<tr>
<td>Chlorine</td>
<td>100ppm (1:500 dilution)</td>
</tr>
<tr>
<td>Phenolic</td>
<td>UD</td>
</tr>
<tr>
<td>Iodophor</td>
<td>UD</td>
</tr>
<tr>
<td>Quaternary ammonium</td>
<td>UD</td>
</tr>
<tr>
<td>Accelerated hydrogen peroxide</td>
<td>0.5%</td>
</tr>
</tbody>
</table>

UD=Manufacturer’s recommended use dilution

Methods in Sterilization

Sterilization of “Critical Objects”

Steam sterilization
Hydrogen peroxide gas plasma
Ethylene oxide
Peracetic acid (0.2%)-chemical sterilization
Ozone
Vaporized hydrogen peroxide
Steam formaldehyde

Efficacy of Disinfection/Sterilization

Influencing Factors

Cleaning of the object
Organic and inorganic load present
Type and level of microbial contamination
Concentration of and exposure time to disinfectant/sterilant
Nature of the object
Temperature and relative humidity

Cleaning

Mechanical cleaning machines-automated equipment may increase productivity, improve cleaning effectiveness, and decrease worker exposure

- Utensil washer-sanitizer
- Ultrasonic cleaner
- Washer sterilizer
- Dishwasher
- Washer disinfecter
- Manual
Sterilization

The complete elimination or destruction of all forms of microbial life and is accomplished in healthcare facilities by either physical or chemical processes.

“Ideal” Sterilization Method

<table>
<thead>
<tr>
<th>Characteristics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Highly efficacious</td>
</tr>
<tr>
<td>Rapidly active</td>
</tr>
<tr>
<td>Strong penetrability</td>
</tr>
<tr>
<td>Materials compatibility</td>
</tr>
<tr>
<td>Non-toxic</td>
</tr>
<tr>
<td>Organic material resistance</td>
</tr>
<tr>
<td>Adaptability</td>
</tr>
<tr>
<td>Monitoring capability</td>
</tr>
<tr>
<td>Cost-effective</td>
</tr>
</tbody>
</table>

Schneider PM. Tappi J. 1994;77:115-119

Steam Sterilization

Advantages
- Non-toxic
- Cycle easy to control and monitor
- Inexpensive
- Rapidly microbicidal
- Least affected by organic/inorganic soils
- Rapid cycle time
- Penetrates medical packing, device lumens

Disadvantages
- Deleterious for heat labile instruments
- Potential for burns

New Trends in Sterilization of Patient Equipment

Alternatives to ETO-CFC
- ETO-CO₂, ETO-HCFC, 100% ETO

New Low Temperature Sterilization Technology
- Hydrogen Peroxide Gas Plasma
- Vaporized hydrogen peroxide
- Peracetic Acid
- Ozone

Ethylene Oxide (ETO)

Advantages
- Very effective at killing microorganisms
- Penetrates medical packaging and many plastics
- Compatible with most medical materials
- Cycle easy to control and monitor

Disadvantages
- Some states (CA, NY, TX) require ETO emission reduction of 90-99.9%
- CFC (inert gas that eliminates explosion hazard) banned after 1995
- Potential hazard to patients and staff
- Lengthy cycle/aeration time

Hydrogen Peroxide Gas Plasma Sterilization

Advantages
- Safe for the environment and health care worker; it leaves no toxic residuals
- Fast - cycle time is 28-52 min and no aeration necessary
- Used for heat and moisture sensitive items since process temperature 50°C
- Simple to operate, install, and monitor
- Compatible with most medical devices
Hydrogen Peroxide Gas Plasma Sterilization

Disadvantages
- Cellulose (paper), linens and liquids cannot be processed
- Sterilization chamber is small, about 3.5ft³ to 7.3ft³
- Endoscopes or medical devices restrictions based on lumen internal diameter and length (see manufacturer’s recommendations); expanded claims with NX
- Requires synthetic packaging (polypropylene) and special container tray

Steris System Processor

Advantages
- Rapid cycle time (30-45 min)
- Low temperature (50-55°C) liquid immersion sterilization
- Environmental friendly by-products (acetic acid, O₂, H₂O)
- Fully automated
- No adverse health effects to operators
- Compatible with wide variety of materials and instruments
- Suitable for medical devices such as flexible/rigid scopes
- Simulated-use and clinical trials have demonstrated excellent microbial killing

Disadvantages
- Potential material incompatibility (e.g., aluminum anodized coating becomes dull)
- Used for immersible instruments only
- Biological indicator may not be suitable for routine monitoring
- One scope or a small number of instruments can be processed in a cycle
- 0.2μ bacterial filters may not be suitable for producing sterile water from tapwater
- More expensive (endoscope repairs, operating costs) than HLD
- Point-of-use system, no long-term storage

V-PRO™1, Vaporized Hydrogen Peroxide

Advantages
- Safe for the environment and health care worker; it leaves no toxic residuals
- Fast - cycle time is 55 min and no aeration necessary
- Used for heat and moisture sensitive items (metal and nonmetal devices)

Disadvantages
- Sterilization chamber is small, about 4.88ft³
- Medical devices restrictions based on lumen internal diameter and length—see manufacturer’s recommendations, e.g., SS lumen 1mm diameter, 125mm length
- Not used for liquid, inners, powders, or any cellulose materials
- Requires synthetic packaging (polypropylene)
- Limited use and limited comparative microbicidal efficacy data

Conclusions

Sterilization
- All sterilization processes effective in killing spores
- Cleaning removes salts and proteins and must precede sterilization
- Failure to clean or ensure exposure of microorganisms to sterilant (e.g. connectors) could affect effectiveness of sterilization process
Sterilization Practices

Sterilization Monitoring

Sterilization monitored routinely by combination of physical, chemical, and biological parameters

- **Physical** - cycle time, temperature, pressure
- **Chemical** - heat or chemical sensitive inks that change color when germicidal-related parameters present (Class 1-6)
- **Biological** - *Bacillus* spores that directly measure sterilization

Recommendations

Monitoring of Sterilizers

- Monitor each load with physical and chemical (internal and external) indicators. If the internal indicator is visible, an external indicator is not needed.
- Use biological indicators to monitor effectiveness of sterilizers at least weekly with spores intended for the type of sterilizer (Class 6 CI not a substitute for BI).
- Use biological indicators for every load containing implantable items and quarantine items, whenever possible, until the biological indicator is negative.

Packaging

- Once items are cleaned, dried, and inspected, items are wrapped or placed in a rigid container
- Arranged in tray/basket according to guidelines
 - Hinged instruments opened
 - Items with removable parts should be disassembled
 - Heavy items positioned not to damage delicate items
- Several choices to maintain sterility of instruments: rigid containers, peel pouches; sterilization wraps

Packaging

Sterilization Wraps

- An effective sterilization wrap would:
 - Allow penetration of the sterilant
 - Provide an effective barrier to microbial penetration
 - Maintain the sterility of the processed item after sterilization
 - Puncture resistant and flexible
 - Drapeable and easy to use
 - Multiple layers are still common practice due to the rigors of handling

Failure to Follow Disinfection and Sterilization Principles

Scenario:

Hospital A discovered that for the past 3 days all surgical instruments were exposed to steam sterilization at 132°C for 0 minutes rather than the intended 4 minutes. A central processing technician turned the timer to 0 minutes in error.
Failure to Follow Disinfection and Sterilization Principles

- Method for assessing patient risk for adverse events
- Although exposure events are often unique, can approach the evaluation of potential failure using a standardized approach
- Propose a sequence of 14 steps that form a general approach to a possible failure of disinfection/sterilization (D/S)
- D/S failure could result in patient exposure to an infectious agent

Disinfection and Sterilization

- Provide overview of disinfection and sterilization recommendations
 - Indications and methods for sterilization, high-level disinfection and low-level disinfection
 - Cleaning of patient-care devices
 - Disinfection and sterilization practices

Summary

Disinfection and sterilization guidelines must be followed to prevent exposure to pathogens that may lead to infection

Thank you