AHP-Based Surface Disinfectant

- Advantages
 - 1 min bactericidal (VRE, MRSA) and virucidal claim
 - 5 min mycobactericidal claim
 - Safe for workers, environment
 - Good cleaner
 - EPA (0.6% RTU, wet wipe)
- Disadvantage
 - Cost (RTU $5.80/32oz/pt, $92.83/512oz/gal; RTU QUAT $3.21/32oz/pt)

Disinfection and Sterilization of Emerging Pathogens

- Hepatitis C virus
- Clostridium difficile
- Cryptosporidium
- Helicobacter pylori
- E.coli 0157:H7
- Antibiotic-resistant microbes (MDR-TB, VRE, MRSA)
- SARS Coronavirus, avian influenza, norovirus, prions
- Bioterrorism agents (anthrax, plague, smallpox)
C. difficile spores

Environmental Contamination
C. difficile

- 25% (117/466) of cultures positive (<10 CFU) for C. difficile. >90% of sites positive with incontinent patients. Samore et al. Am J Med 1996;100:32.
- 9.3% (85/910) of environmental cultures positive (floors, toilets, toilet seats) for C. difficile. Kim et al. J Inf Dis 1981;143:42.
- 29% (62/216) environmental samples were positive for C. difficile. 8% (7/88) culture-negative patient, 29% (11/38) positive cultures in rooms occupied by asymptomatic patients and 49% (44/90) in rooms with patients who had CDAD. NEJM 1989;320:204
- 10% (110/1086) environmental samples were positive for C. difficile in case-associated areas and 2.5% (14/489) in areas with no known cases. Fekety et al. Am J Med 1981;70:907.
Role of the Environment

C. difficile

 - 0-25% environmental sites positive-0% hand cultures positive
 - 26-50% environmental sites positive-8% hand cultures positive
 - >50% environmental sites positive-36% hand cultures positive
- 59% of 35 HCWs were *C. difficile* positive after direct contact with culture-positive patients.
- *C. difficile* incidence data correlated significantly with the prevalence of environmental *C. difficile*. Fawley et al. Epid Infect 2001;126:343.

Disinfectants and Antiseptics

C. difficile spores at 20 min, Rutala et al, 2006

- No measurable activity (1 *C. difficile* strain, J9)
 - CHG
 - Vesphen (phenolic)
 - 70% isopropyl alcohol
 - 95% ethanol
 - 3% hydrogen peroxide
 - Clorox disinfecting spray (65% ethanol, 0.6% QUAT)
 - Lysol II disinfecting spray (79% ethanol, 0.1% QUAT)
 - TBQ (0.06% QUAT); QUAT may increase sporulation capacity - Lancet 2000;356:1324
 - Novaplus (10% povidone iodine)
 - Accel (0.5% hydrogen peroxide)
Disinfectants and Antiseptics
C. difficile spores at 10 and 20 min, Rutala et al, 2006

- ~4 \log_{10} reduction (5 *C. difficile* strains including BI-9)
 - Clorox, 1:10, ~6,000 ppm chlorine (but not 1:50, ~1,200 ppm)
 - Clorox Clean-up, ~1,910 ppm chlorine
 - Tilex, ~25,000 ppm chlorine
 - Steris 20 sterilant, 0.2% peracetic acid
 - Cidex, 2.4% glutaraldehyde
 - Cidex-OPA, 0.55% OPA
 - Wavicide, 2.65% glutaraldehyde
 - Aldahol, 3.4% glutaraldehyde and 26% alcohol

Control Measures
C. difficile

- Handwashing (soap and water), contact precautions, and meticulous environmental cleaning (disinfect all surfaces) with an EPA-registered disinfectant should be effective in preventing the spread of the organism. McFarland et al. NEJM 1989;320:204.

- In units with high endemic *C. difficile* infection rates or in an outbreak setting, use dilute solutions of 5.25-6.15% sodium hypochlorite (e.g., 1:10 dilution of bleach) for routine disinfection. (Category II)

- For semicritical equipment, glutaraldehyde (20m), OPA (12m) and peracetic acid (12m) reliably kills *C. difficile* spores using normal exposure times.
Effect of Hydrogen Peroxide Vapor (HPV) on Clostridium difficile (CD)

- HPV was injected into sealed wards and individual patient rooms using generators until approx 1 micron film of HP was achieved on the surface.
- 5% (8/165) environmental sites cultured before HPV yielded CD compared to none of 155 cultures obtained after HPV.
- HPV was effective in eradicating CD environmental contamination that remained following routine cleaning, which included use of dilute bleach.
- HPV also found effective for MDROs (MRSA, VRE, GNR) in ICU.

Begna, JM and others. Society of Healthcare Epidemiology of America (SHEA), 2006 (abstract 156, page 109); Passaretti and others. SHEA, 2008 (abstract 80, page 10).

Norovirus
Noroviruses

- Norovirus (formerly Norwalk-like viruses-NLV) is a genus within the family Caliciviridae. SS-RNA with a capsid structure provides increased resistance to chemical disinfection.
- Causes acute gastroenteritis in humans; fecal-oral transmission primarily, although droplet and fomite transmission may facilitate spread.
- Infective dose as low as 10-100 particles.
- Outbreaks have been reported in hospitals, homes, camps, schools, restaurants, hotels, rehabilitation centers and cruise ships
- Outbreaks in hospitals have increased in recent years and this may lead to the closure of wards
- This group of viruses cannot be grown in cell culture so feline calicivirus used as a surrogate

Environmental Contamination
Norovirus

- Hospital-11/36 (31%) environmental swabs were positive for RT-PCR. Positive swabs were from lockers, curtains and commodes and confined to the immediate environment of symptomatic patients. J Hosp Infect 1998;39:39.
- Hotel-61/144 (42%) were positive for NLV RNA. Cheesbrough et al. Epid. Infect. 2000;125:93.
- Rehabilitation Center-Norovirus detected from patients and three environmental specimens (physiotherapy instrument handle, toilet seat (2-room of symptomatic guest, public toilet) RT-PCR. Epid Infect 2002;129:133-138.
- LTCF-5/10 (50%) of the environmental samples were positive for norovirus by RT-PCR. Wu et al. ICHE 2005;26:802.

Some positive PCR results may represent non-infectious virus.
Environmental Survival
Norovirus

- At 20°C a 9-log_{10} reduction of FCV between 21-28 days in a dried state Doutree et al. J Hosp Infect 1999;41:51
- At 20°C a 9-log_{10} reduction of FCV between 14-21 days in suspension Doutree et al. J Hosp Infect 1999;41:51
- At 20°C a 3-log_{10} reduction in infectivity (two animal caliciviruses) occurred in 1 week. Duizer et al. Appl Env Micro 2004;70:4538.

Role of the Environment
Norovirus

1. Prolonged outbreaks on ships suggest NLV survives well
2. Outbreak of GE affected more than 300 people who attended a concert hall over a 5-day period. Norwalk-like virus (NLV) confirmed in fecal samples by RT-PCR. The index case was a concert attendee who vomited in the auditorium. GI illness occurred among members of 8/15 school parties who attended the following day. Disinfection procedure was poor. Evans et al. Epid Infect 2002;129:355
3. Extensive environmental contamination of a hospital ward.
 Suggest transmission most likely occurred through direct contact with contaminated fomites.
Inactivation of Feline Caliciviruses

Doultree et al. J Hosp Infect 1999;41:51

<table>
<thead>
<tr>
<th>Disinfectant</th>
<th>Log Reduction</th>
<th>Contact Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Glutaraldehyde, 0.5%</td>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td>Hypochlorite, 1000 and 5000 ppm</td>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td>QUAT</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Iodine, 0.8%</td>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td>Ethanol, 75%</td>
<td>1.25</td>
<td>1</td>
</tr>
</tbody>
</table>

Inactivation of Murine and Human Noroviruses

<table>
<thead>
<tr>
<th>Disinfectant, 1 min</th>
<th>MNV Log<sub>10</sub> Reduction</th>
<th>HNV Log<sub>10</sub> Reduction</th>
</tr>
</thead>
<tbody>
<tr>
<td>70% Isopropyl alcohol</td>
<td>4.2</td>
<td>2.2</td>
</tr>
<tr>
<td>0.5% Accel H<sub>2</sub>O<sub>2</sub></td>
<td>3.9</td>
<td>2.8</td>
</tr>
<tr>
<td>79% Ethanol + QUAT</td>
<td>3.4</td>
<td>3.6</td>
</tr>
<tr>
<td>Chlorine (24,000ppm)</td>
<td>2.4</td>
<td>4.3</td>
</tr>
<tr>
<td>Phenolic, QUAT, Ag, 3% H<sub>2</sub>O<sub>2</sub></td>
<td>≤ 1</td>
<td>≤ 1 (2.1 QUAT)</td>
</tr>
</tbody>
</table>
Surface Disinfection
Norovirus

- School outbreak of NLV-cleaning with QUAT preparations made no impact on the course of the outbreak. The outbreak stopped after the school closed for 4 days and was cleaned using chlorine-based agents. Marks et al. Epid Inf 2003;131:727
- Detergent-based cleaning to produce a visibly clean surface consistently failed to eliminate norovirus contamination. A hypochlorite/detergent formulation of 5000 ppm chlorine was sufficient to decontaminate surfaces. Barker et al. J Hosp Infect 2004;58:42.

C. difficile and Norovirus

Due to the relative resistance of C. difficile spores and norovirus, during clusters, surfaces should be disinfected with a product shown to be effective (e.g., chlorine 5000ppm [1:10 bleach])
Disinfection and Sterilization: Current Issues and New Technologies

- Disinfection and sterilization principles
- Current issues
 - Critical-cleaning with washer disinfectors, Class 6 chemical indicator, flash sterilization, ozone, ETO, prions
 - Semicritical items—C. difficile spores, laryngoscopes, new AERs/HLDs, endocavitary
 - Noncritical-surface disinfection
 - Accelerated hydrogen peroxide (AHP)
 - Norovirus and C. difficile spores (HP vapor)
 - Microfiber
 - Computers-sustained antimicrobial activity, touchscreen cleaning
 - Germicides-MRSA inactivation by disinfectants, technique
 - Green products

Microfiber Cleaning

- Pad contains fibers (polyester and polyamide) that provide a cleaning surface 40 times greater than conventional string mops
- Proposed advantages: reduce chemical use and disposal (disinfectant solution not changed after every third room, clean microfiber per room [washing lifetime 500-1000x]); light (~5 lb less than string mop) and ergonomic; reduce cleaning times.
- Does the microfiber provide the same or better removal of microorganisms on surfaces?
Effectiveness of Microfiber Mop

- Test conditions with a EPA-registered disinfectant: compared routine mop and bucket; microfiber mop and bucket; microfiber mop and system bucket. Twenty-four replicates per condition.
- Conducted RODAC sampling before and after floor disinfection (5 samples per room)
- New disinfectant solution for each test condition
- Dry time varied from 2 (routine mop and bucket)-8 (microfiber mop and bucket) minutes

Effectiveness of Microfiber Mop
(Rutala, Gergen and Weber, Am J Infect Control, 2007;35:569)

<table>
<thead>
<tr>
<th>Description</th>
<th>Effectiveness</th>
</tr>
</thead>
<tbody>
<tr>
<td>Disinfectant-regular mop</td>
<td>95%</td>
</tr>
<tr>
<td>Disinfectant-microfiber system</td>
<td>95%</td>
</tr>
<tr>
<td>Disinfectant-microfiber mop and regular mop bucket</td>
<td>88%</td>
</tr>
<tr>
<td>Detergent-regular mop</td>
<td>68%</td>
</tr>
<tr>
<td>Detergent-microfiber system</td>
<td>95%</td>
</tr>
<tr>
<td>Detergent-microfiber mop and regular mop bucket</td>
<td>78%</td>
</tr>
</tbody>
</table>
Microfiber Summary

- The microfiber system demonstrated superior microbial removal compared to cotton string mops when used with a detergent cleaner
- The use of a disinfectant did not improve the microbial elimination demonstrated by the microfiber system
- Use of a disinfectant did significantly improve microbial removal when a cotton string mop was used

Disinfection of Computer Keyboards
Computer Keyboards, ICHE 2006;27:372

- Increased use of computers in patient areas has led to contamination of keyboards as reservoirs of pathogens
- Study performed to
 - Examine the efficacy of different disinfectants on the computer keyboard
 - Determine if there were cosmetic (key lettering removed) or functional changes after 300 wipes
Disinfection of Computer Keyboards

- All tested products were effective (>95%) in removing and/or inactivating the test pathogens (MRSA, *P. aeruginosa*). No functional/cosmetic damage after 300 wipes.
- Disinfectants included: 3 quaternary ammonium compounds, 70% isopropyl alcohol, phenolic, chlorine (80ppm)
- At present, recommend that keyboards be disinfected daily (for 5 sec) and when visibly soiled

Table 3. Sustained Efficacy of Disinfectants Applied to Keyboard Against Vancomycin-Resistant *Enterococcus* Species

<table>
<thead>
<tr>
<th>Disinfectant</th>
<th>Efficacy of Disinfectant, by Time of Microbial Challenge and Duration of Disinfectant Exposure, %</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Challenge at 6 Hours</td>
</tr>
<tr>
<td></td>
<td>10-min Exposure</td>
</tr>
<tr>
<td>Alcohol</td>
<td>3.05</td>
</tr>
<tr>
<td>CavI Wipes</td>
<td>100.00</td>
</tr>
<tr>
<td>Clorox Disinfecting Wipes</td>
<td>100.00</td>
</tr>
<tr>
<td>Sani-Cloth Plus</td>
<td>100.00</td>
</tr>
<tr>
<td>Sterile water</td>
<td>0.00</td>
</tr>
</tbody>
</table>

Note. Efficacy was calculated as the percentage difference in the number of colony-forming units on the treated keys, compared with the number of colony-forming units on the control keys. Challenge times are hours since disinfectant exposure.
QUATS demonstrated excellent sustained activity against VRE and antimicrobial activity was maintained over the 48 test period

Touchscreen Cleaning

- Follow the manufacturer's recommendations
- Prepare the cleaning solution according to the manufacturer's instructions (e.g., alcohol, glutaraldehyde, mild soap, phenolic)
- Wet a clean, soft cloth with the selected cleaning solution
- Remove excess liquid from the cloth and squeeze damp
- Wipe exposed surfaces (do not allow liquid to enter interior)
- Remove any soap residue by gently wiping with clean cloth
- QUATS are not recommended by some manufacturers
Disinfection and Sterilization: Current Issues and New Technologies

- Disinfection and sterilization principles
- Current issues
 - Critical-cleaning with washer disinfectors, Class 6 chemical indicator, flash sterilization, ozone, VHP, ETO, prions
 - Semicritical items—C. difficile spores, laryngoscopes, new AERs/HLDs, endocavitary
 - Noncritical-surface disinfection
 - Accelerated hydrogen peroxide (AHP)
 - Norovirus and C. difficile spores (HP vapor)
 - Microfiber
 - Computers-sustained antimicrobial activity, touchscreen cleaning
 - Germicides-MRSA inactivation by disinfectants, technique
 - Green products

MRSA
MRSA

- Frequency of environmental contamination in areas housing MRSA patients has ranged from 1 to 74% (23.1%, 53.6% from isolation rooms) of surfaces cultured.
- MRSA viable in the environment for days to weeks
- HCW can contaminate their hands or gloves by touching contaminated surfaces
- Cleaning or disinfecting the environment can reduce transmission but cleaning regimens, as currently practiced, may not eliminate MRSA from surfaces
- Since MRSA sensitive to all germicides, likely due to surfaces not cleaned/disinfected
- Need targeted methods to evaluate the thoroughness of room cleaning

Risk of Acquiring MRSA and VRE from Prior Room Occupants

- Admission to a room previously occupied by an MRSA-positive patient or VRE-positive patient significantly increased the odds of acquisition for MRSA and VRE (although this route is a minor contributor to overall transmission). Arch Intern Med 2006;166:1945.
- Prior environmental contamination, whether measured via environmental cultures or prior room occupancy by VRE-colonized patients, increases the risk of acquisition of VRE. Clin Infect Dis 2008;46:678.
Practice or Product

Susceptibility of MSSA and MRSA to a Phenolic and Quaternary
Rutala et al. ICHE 1997;18:417

<table>
<thead>
<tr>
<th></th>
<th>Phenolic 1:256</th>
<th>Phenolic 1:128</th>
<th>QUAT 1:64</th>
<th>QUAT 1:32</th>
</tr>
</thead>
<tbody>
<tr>
<td>MSSA</td>
<td>2/60</td>
<td>0/60</td>
<td>5/60</td>
<td>1/60</td>
</tr>
<tr>
<td>MRSA</td>
<td>0/60</td>
<td>0/60</td>
<td>4/60</td>
<td>1/60</td>
</tr>
</tbody>
</table>
TABLE 2
DISINFECTANT ACTIVITY AGAINST ANTIBiotic-SUSCEPTIBLE AND ANTIBiotic-RESISTANT BACTERIA

<table>
<thead>
<tr>
<th>Product</th>
<th>VRE</th>
<th>VRE</th>
<th>MSSA</th>
<th>MSSA</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.5 min</td>
<td>5 min</td>
<td>0.5 min</td>
<td>5 min</td>
</tr>
<tr>
<td>Vinegar</td>
<td>>4.5</td>
<td>>4.5</td>
<td>>4.5</td>
<td>>4.5</td>
</tr>
<tr>
<td>Clorex</td>
<td>>5.4</td>
<td>>5.1</td>
<td>>5.0</td>
<td>>5.0</td>
</tr>
<tr>
<td>Lysozyme Disinfectant</td>
<td>>4.3</td>
<td>>4.0</td>
<td>>4.0</td>
<td>>4.0</td>
</tr>
<tr>
<td>Lysozyme Antimicrobial</td>
<td>>5.5</td>
<td>>5.5</td>
<td>>5.5</td>
<td>>5.5</td>
</tr>
</tbody>
</table>

Note: MSLA: methicillin-sensitive Staphylococcus aureus, MSSA: methicillin-resistant Staphylococcus aureus, VRE: vancomycin-resistant enterococcus. Data represent results of two replicate tests. Values presented by "X" represent the limit of detection of the assay. Assays were conducted at a temperature of 25°C and a relative humidity of 40%. Results were calculated as the log of pH/10, where pH is the pH of bacteria surviving after exposure and T is the time of the exposure.

Not Product: Is It Practice?
Surface Disinfection
Effectiveness of Different Methods

<table>
<thead>
<tr>
<th>Technique (with cotton)</th>
<th>MRSA \log_{10} Reduction (QUAT)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Saturated cloth</td>
<td>4.41</td>
</tr>
<tr>
<td>Spray (10s) and wipe</td>
<td>4.41</td>
</tr>
<tr>
<td>Spray, wipe, spray (1m), wipe</td>
<td>4.41</td>
</tr>
<tr>
<td>Spray</td>
<td>4.41</td>
</tr>
<tr>
<td>Spray, wipe, spray (until dry)</td>
<td>4.41</td>
</tr>
<tr>
<td>Disposable wipe with QUAT</td>
<td>4.55</td>
</tr>
<tr>
<td>Control: detergent</td>
<td>2.88</td>
</tr>
</tbody>
</table>

Patient Area Cleaning/Disinfecting
PC Carling et al, SHEA 2007 and ICHE 2008;29:1

- Monitor cleaning performance using an invisible fluorescent targeting method. Rooms (14 high-touch objects) were marked and evaluated after terminal cleaning.
- Results: 1,119 rooms and 13,369 objects were evaluated in 23 hospitals. Mean proportion of objects cleaned was 49%. Following education and process improvement feedback, cleaning improved to 77%
- Conclusion: Substantial opportunity for improving terminal cleaning/disinfecting activities.
Practice * NOT Product

*surfaces not wiped

The Green Hospital

- Hospitals are feeling the pressure to go green, both from eco-conscious donors and governmental agencies
- Some features of The Green Hospital
 - Roof garden-wildlife habitat, adds insulation, absorbs rain
 - Fewer contaminants-upholstery and mattresses without flame retardants, formaldehyde-free insulation, green cleaning products (no hazardous fumes), triple-filtered air
 - Exposure to natural light
 - Reduced water usage-water efficient toilets and faucets
 - Greater energy efficiency-low energy fluorescent bulbs
 - More quiet-number 1 complaint is noise, better insulation between rooms
TABLE 1
Effectiveness of Disinfectant Against Potential Pathogens

<table>
<thead>
<tr>
<th>Product</th>
<th>Staphylococcus aureus</th>
<th>Salmonella choleraesuis</th>
<th>Escherichia coli 0157H7</th>
<th>Pseudomonas aeruginosa</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.5 min</td>
<td>5 min</td>
<td>0.5 min</td>
<td>5 min</td>
</tr>
<tr>
<td>Viscous Itie</td>
<td>8.2</td>
<td>8.2</td>
<td>8.7</td>
<td>8.7</td>
</tr>
<tr>
<td>TDIQ</td>
<td>6.4</td>
<td>6.6</td>
<td>6.6</td>
<td>6.6</td>
</tr>
<tr>
<td>Clorox</td>
<td>5.8</td>
<td>5.8</td>
<td>5.9</td>
<td>5.9</td>
</tr>
<tr>
<td>Ethanol</td>
<td>6.2</td>
<td>6.7</td>
<td>6.0</td>
<td>6.0</td>
</tr>
<tr>
<td>Lysol Disinfectant</td>
<td>4.2</td>
<td>4.3</td>
<td>4.0</td>
<td>3.9</td>
</tr>
<tr>
<td>Lysol Antimicrobial</td>
<td>5.6</td>
<td>5.6</td>
<td>5.8</td>
<td>5.8</td>
</tr>
<tr>
<td>Mr. Clean</td>
<td>4.1</td>
<td>8.0</td>
<td>5.7</td>
<td>5.7</td>
</tr>
<tr>
<td>Vinegar</td>
<td>0.03</td>
<td>0.2</td>
<td>6.0</td>
<td>6.0</td>
</tr>
<tr>
<td>Baking soda</td>
<td>0.0</td>
<td>0.5</td>
<td>2.3</td>
<td>2.3</td>
</tr>
</tbody>
</table>

Data represent mean of two replicates. Values preceded by "*" represent the limit of detection of the assay. Assays were conducted at a temperature of 25°C and a relative humidity of 80%. Results were calculated as the log of N0/Nt, where N0 is the titer of bacteria surviving after exposure and Nt is the titer of the control.

TABLE 2
Disinfectant Activity Against Antibiotic-Susceptible and Antibiotic-Resistant Bacteria

<table>
<thead>
<tr>
<th>Product</th>
<th>VSE</th>
<th>VRE</th>
<th>MSSA</th>
<th>MRSA</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.5 min</td>
<td>5 min</td>
<td>0.5 min</td>
<td>5 min</td>
</tr>
<tr>
<td>Viscous Itie</td>
<td>4.3</td>
<td>4.3</td>
<td>5.1</td>
<td>5.1</td>
</tr>
<tr>
<td>Clorox</td>
<td>5.4</td>
<td>5.4</td>
<td>5.0</td>
<td>5.0</td>
</tr>
<tr>
<td>Lysol Disinfectant</td>
<td>4.5</td>
<td>4.5</td>
<td>5.1</td>
<td>5.1</td>
</tr>
<tr>
<td>Lysol Antimicrobial</td>
<td>5.5</td>
<td>5.5</td>
<td>5.5</td>
<td>5.5</td>
</tr>
<tr>
<td>Vinegar</td>
<td>0.1</td>
<td>3.3</td>
<td>1.0</td>
<td>1.1</td>
</tr>
</tbody>
</table>

Abbreviations: VSE, vancomycin-sensitive *Staphylococcus*; VRE, vancomycin-resistant *Staphylococcus*; MSSA, methicillin-susceptible *Staphylococcus*; MRSA, methicillin-resistant *Staphylococcus*. Values preceded by "*" represent the limit of detection of the assay. Assays were conducted at a temperature of 25°C and a relative humidity of 80%. Results were calculated as the log of N0/Nt, where N0 is the titer of bacteria surviving after exposure and Nt is the titer of the control.

Currently, “green” cleaners will remove microbial contaminants but will not dependably kill pathogens causing HAIs

Summary

- D/S guidelines must be followed to prevent exposure to pathogens that may lead to infection. Semicritical items represent the greatest risk. Class 6 indicators not a substitute for biological indicators.
- During clusters, surfaces potentially contaminated with norovirus or C. difficile spores should be disinfected with with an agent shown to have efficacy (e.g., hypochlorite, 5000 ppm)
- Microfiber demonstrated superior microbial removal compared to cotton-string mops with a detergent
- Disinfectants (but not “green” products) demonstrate excellent activity against MRSA but practices are deficient. QUATS have sustained antimicrobial activity.
Disinfection and Sterilization in Healthcare Facilities
WA Rutala, DJ Weber, and HICPAC, “In press”

- Overview
 - Last Centers for Disease Control and Prevention guideline in 1985
 - 274 pages (>130 pages preamble, 21 pages recommendations, glossary of terms, tables/figures, >1100 references)
 - Evidence-based guideline
 - Cleared by HICPAC February 2003; delayed by FDA/CDC
 - Publication expected in Summer 2008

Disinfection, Sterilization, and Antisepsis: Current Issues and New Technologies

Pre-Conference
APIC Annual Conference, June 7-11, 2009
Fort Lauderdale, FL
Disinfection and Sterilization:
Current Issues and New Technologies

- Disinfection and sterilization principles
- Current issues
 - Critical-cleaning with washer disinfectors, Class 6 chemical indicator, flash sterilization, ozone, VHP, ETO, prions
 - Semicritical items: *C. difficile* spores, laryngoscopes, new AERs/HLDs, endocavitary
 - Noncritical-surface disinfection
 - Accelerated hydrogen peroxide (AHP)
 - Norovirus and *C. difficile* spores (HP vapor)
 - Microfiber
 - Computers-sustained antimicrobial activity, touchscreen cleaning
 - Germicides-MRSA inactivation by disinfectants, technique
 - Green products

[disinfectionandsterilization.org]
Thank you

References

- Rutala WA, Weber DJ, HICPAC. CDC guideline for disinfection and sterilization in healthcare facilities. MMWR. In press.
- Rutala WA. APIC guideline for selection and use of disinfectants. Am J Infect Control 1996;24:313
<table>
<thead>
<tr>
<th>References</th>
</tr>
</thead>
</table>